Cursos gratuitos

Aisladores

Curso Gratuito De Electricidad


Un aislante eléctrico es un material con escasa capacidad de conducción de la electricidad, utilizado para separar conductores eléctricos evitando un cortocircuito y para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que de tocarse accidentalmente cuando se encuentran en tensión pueden producir una descarga. Los más frecuentemente utilizados son los materiales plásticos y las cerámicas. Las piezas empleadas en torres de alta tensión empleadas para sostener o sujetar los cables eléctricos sin que éstos entren en contacto con la estructura metálica de las torres se denominan aisladores. El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material. El paso de la corriente del conductor al apoyo puede producirse por las causas siguientes:

  • Por conductividad del material: es decir a través de la masa del aislador. Para evitar esto se emplean materiales cuya corriente de fuga es despreciable (Ej: Vidrio, porcelana, polímeros.)
  • Por conductividad superficial: se produce cuando una corriente de fuga contornea la parte exterior del aislador por aumento de la conductividad, esto es ocasionado por haberse depositado en la superficie del aislador una capa de polvo o humedad. Esta conductividad recibe el nombre de efecto corona y suele reducirse dando un perfil adecuado a la superficie del aislador.
  • Por perforación de la masa del aislador: al ser muy difícil mantener la uniformidad dieléctrica de un material en toda su masa, existe el peligro de que se perfore el aislador, sobre todo si el espesor es grande. Por ello, los aisladores suelen fabricarse en varias piezas de pequeño espesor unidas por una pasta especial.
  • Por descarga disruptiva a través del aire: puede producirse un arco entre el conductor y el soporte a través del aire, cuya rigidez dieléctrica a veces no es suficiente para evitar la descarga. Esto suele ocurrir con la lluvia, debido a la ionización del aire, y se puede evitar con un diseño adecuado para aisladores de intemperie, tratando de aumentar la distancia entre aislador y soporte de forma que la tensión necesaria para la formación del arco en el aire sea mayor.
En la fabricación de aisladores eléctricos se debe utilizar materiales que posean alta resistividad, y gran resistencia mecánica, entre otras cualidades necesarias para el buen desempeño del aislador. Hoy en día los materiales más usados son:
  • Porcelana: constituida por caolín y cuarzo, con un tratamiento de cocción a 1400 ºC; se recubre de una capa de silicato, recociéndose posteriormente para obtener un vidriado en caliente que hace impermeables los aisladores y dificulta la adherencia de polvo o humedad.
  • Esteatita y resinas epoxi: se emplean cuando los aisladores han de soportar grandes esfuerzos mecánicos, debido a que su resistencia mecánica es el doble que la de la porcelana.
  • Vidrio: es una mezcla de ácido silícico con óxidos de calcio, sodio, bario, aluminio, etc., fundida entre 1300 y 1400 ºC. La composición de base cálcico-alcalina, obtenida por enfriamiento brusco mediante una corriente forzada de aire frío, posee elevada dureza y resistencia mecánica, incluso gran estabilidad, ante los cambios de temperatura, con el inconveniente del mayor coeficiente de dilatación.
  • Materiales compuestos (polimétricos): fibras de vidrio y resina en el núcleo y distintas "gomas" en la parte externa, con formas adecuadas, han introducido en los años más recientes la tecnología del aislador compuesto. Estas modernas soluciones con ciertas formas y usos ponen en evidencia sus ventajas sobre porcelana y vidrio.