Para qué te prepara este curso subvencionado Curso Gratuito Master en Machine Learning, Inteligencia Artificial y Big Data:
El Master en Machine Learning, Inteligencia Artificial y Big Data te proporcionará los conocimientos necesarios para especializarte en campos como el machine learning, la inteligencia artificial o el deep learning, clave en la profunda revolución tecnológica actual. Aprenderás a llevar a cabo la extracción de estructuras de datos y su aplicación en el aprendizaje automático. También crearás y desarrollarás chatbots gracias al procesamiento de lenguaje natural además de conocer todo el ámbito del internet de las cosas (IoT) en la industria 4.0 y su aplicación gracias a la visión artificial.
A quién va dirigido:
El Master en Machine Learning, Inteligencia Artificial y Big Data está orientado a profesionales que deseen actualizarse y adaptarse a campos en pleno auge tecnológico como el machine learning, la inteligencia artificial y el deep learning. Además, también está pensado para aquellos estudiantes que busquen una formación especializada que les ayude a adentrase en el mercado laboral a través de sus prácticas garantizadas.
Objetivos de este curso subvencionado Curso Gratuito Master en Machine Learning, Inteligencia Artificial y Big Data:
- Manejar, programar y parametrizar herramientas avanzadas de machine learning para la creación de software inteligente. - Crear y administrar sistemas expertos. - Crear y desarrollar chatbots gracias al procesamiento del lenguaje natural (PLN). - Desarrollar un sistema de Deep Learning. - Descubrir la visión artificial, el iot y su aplicación para la industria 4.0.
Salidas Laborales:
Gracias a la realización del Master en Machine Learning, Inteligencia Artificial y Big Data optarás a puestos tan importantes dentro de cualquier empresa actual como Machine Learning Engineer, Machine Learning Developer, Data Scientist, Experto en Visión artificial, AI Developer, Research Scientist on Deep Learning o Artificial Intelligence specialist.
Resumen:
Estamos en una etapa de cambio tecnológico. Dia a día crece la cantidad de información que generamos y cada vez se ven más avances en la automatización de tareas y en la creación de modelos artificiales inteligentes dentro de empresas, páginas web, aplicaciones, etc. Saber cómo interpretar todos estos grandes volúmenes de información y aplicarlo en campos como la inteligencia artificial, el machine learning y el deep learning se vuelve clave para llevar a cabo una actualización tecnológica dentro de cualquier empresa. El Master en Machine Learning, Inteligencia Artificial y Big Data te proporcionará los conocimientos necesarios para llevar a cabo la extracción de estructuras de datos y su aplicación en el aprendizaje automático. También crearás y desarrollarás chatbots gracias al procesamiento de lenguaje natural además de conocer todo el ámbito del internet de las cosas (IoT) en la industria 4.0 y su aplicación gracias a la visión artificial. Además, en este máster impartido por INESEM Business School, contarás con un equipo de profesionales especializados en la materia que te ayudarán en todo momento y gracias a las prácticas garantizadas en empresas punteras dentro del sector podrás acceder a un mercado laboral con gran auge y futuro.
Titulación:
Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Metodología:
Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes. La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.
Temario:
MÓDULO 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
- Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
- Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
MÓDULO 2. MACHINE LEARNING Y DEEP LEARNING
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
UNIDAD DIDÁCTICA 7. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 8. SISTEMAS NEURONALES
- Redes neuronales
- Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 9. REDES DE UNA SOLA CAPA
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
UNIDAD DIDÁCTICA 10. REDES MULTICAPA
- Tipos de redes profundas
- Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 11. ESTRATEGIAS DE APRENDIZAJE
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
MÓDULO 3. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
MÓDULO 4. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
- Introducción a la Inteligencia artificial
- El Test de Turing
- Agentes Inteligentes
- Aplicaciones de la inteligencia artificial
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel
MÓDULO 5. VISIÓN ARTIFICIAL Y SU APLICACIÓN EN LA INDUSTRIA 4.0
UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
- Visión artificial y su aplicación en la industria 4.0
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
- Ópticas
- Iluminación
- Cámaras
- Sistemas 3D
- Sensores
- Equipos compactos
- Metodologías para la selección del hardware
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
- Algoritmos
- Software
- Segmentación e interpretación de imágenes
- Metodologías para la selección del software
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
- Aplicaciones clásicas: discriminación, detección de fallos…
- Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
MÓDULO 6. PROGRAMACIÓN DE VISIÓN ARTIFICIAL CON PYTHON Y OPENCV
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
UNIDAD DIDÁCTICA 2. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
UNIDAD DIDÁCTICA 3. TRATAMIENTO DE IMÁGENES
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
UNIDAD DIDÁCTICA 4. HISTOGRAMAS Y TEMPLATE MATCHING
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 5. COLORES Y ESPACIOS DE COLOR
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 6. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
UNIDAD DIDÁCTICA 7. APRENDIZAJE AUTOMÁTICO
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)
MÓDULO 7. IOT (INTERNET DE LAS COSAS) Y SISTEMAS CIBERFÍSICOS EN LA INDUSTRIA 4.0
UNIDAD DIDÁCTICA 1. INTERNET DE LAS COSAS
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 2. SISTEMAS CIBERFÍSICOS
- Contexto Sistemas Ciberfísicos (CPS)
- Características CPS
- Componentes CPS
- Ejemplos de uso
- Retos y líneas de trabajo futuras
MÓDULO 8. PROYECTO FIN DE MÁSTER
curso gratuito le prepara para ser
Gracias a la realización del Master en Machine Learning, Inteligencia Artificial y Big Data optarás a puestos tan importantes dentro de cualquier empresa actual como Machine Learning Engineer, Machine Learning Developer, Data Scientist, Experto en Visión artificial, AI Developer, Research Scientist on Deep Learning o Artificial Intelligence specialist.
. ¿A qué esperas para llevar a cabo tus proyectos personales?.