Para qué te prepara este curso subvencionado Curso Gratuito Maestría Oficial en Inteligencia Artificial:
Gracias a esta Maestría en Inteligencia Artificial estarás preparado/a para una amplia gama de oportunidades profesionales en campos relacionados con la inteligencia artificial, ya sea en la industria, la investigación o el sector académico. Podrás desempeñar roles en la ciencia de datos, el aprendizaje automático, la visión artificial, el procesamiento del lenguaje natural y otros campos relacionados con la inteligencia artificial.
A quién va dirigido:
Esta Maestría en Inteligencia Artificial es adecuada para aquellos que tengan un título de licenciatura en ciencias de la computación, ingeniería, matemáticas, física o una disciplina relacionada. También es adecuada para aquellos con experiencia laboral en tecnología y que buscan actualizar sus habilidades en el campo de la inteligencia artificial.
Objetivos de este curso subvencionado Curso Gratuito Maestría Oficial en Inteligencia Artificial:
- Comprender los conceptos y teorías de la inteligencia artificial y todas sus posibles aplicaciones. - Aplicar la IA en el aprendizaje automático, el procesamiento del lenguaje natural y la visión artificial. - Desarrollar habilidades en programación y análisis de datos, utilizando herramientas y técnicas específicas. - Resolver problemas en diversos sectores, como la salud, la industria y la seguridad. - Diseñar y desarrollar sistemas inteligentes que puedan adaptarse y mejorar a medida que se utilizan. - Evaluar y mejorar la eficacia de los sistemas de inteligencia artificial usando técnicas de evaluación y pruebas. - Aprender a aplicar la inteligencia artificial en el internet de las cosas y su aplicación en la industria 4.0.
Salidas Laborales:
Las salidas profesionales de esta Maestría en Inteligencia Artificial son muy amplias y reconocidas. Podrás trabajar en diferentes sectores como industria, investigación o el sector académico, optando a puestos como Científico de datos, Machine Learning Engineer, Especialista en visión artificial, Programador de chatbots, AI Designer o Investigador de Inteligencia artificial.
Resumen:
En la actualidad, la inteligencia artificial está transformando todas las áreas de la sociedad, desde la industria y la salud hasta el entretenimiento y la seguridad. Esta Maestría en Inteligencia Artificial es una excelente opción para aquellos estudiantes que buscan una especialización en una de las tecnologías más importantes y en crecimiento en la actualidad. Obtendrás los conocimientos y habilidades necesarios para diseñar, desarrollar y aplicar soluciones basadas en la inteligencia artificial. Tendrás una amplia gama de oportunidades profesionales, sobre todo en empresas de tecnología, investigación y desarrollo. Contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión.
Titulación:
Titulación de Maestría Oficial en Inteligencia Artificial expedida por la Universidad Católica Nordestana en colaboración con Euroinnova International Online Education
Metodología:
Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.
Temario:
MÓDULO 1. TRANSFORMACIÓN DIGITAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL LA TRANSFORMACIÓN DIGITAL
- Introducción a la transformación digital
- Concepto de innovación
- Concepto de tecnología
- Tipología de la tecnología
- Punto de vista de la ventaja competitiva
- Según su disposición en la empresa
- Desde el punto de vista de un proyecto
- Otros tipos de tecnología
- La innovación tecnológica
- Competencias básicas de la innovación tecnológica
- El proceso de innovación tecnológica
- Herramientas para innovar
- Competitividad e innovación
UNIDAD DIDÁCTICA 2. LA SOCIEDAD 3.0
- Filosofía Web 3.0 y su impacto en el mundo empresarial
- Socialización de la Web
- Adaptación del mundo empresarial a las Nuevas tecnologías
UNIDAD DIDÁCTICA 3. NUEVO ECOSISTEMA DIGITAL
- Community Manager
- Chief Data Officer
- Data Protection Officer
- Data Scientist
- Otros perfiles
- Desarrollo de competencias informáticas
- El Papel del CEO como líder en la transformación
UNIDAD DIDÁCTICA 4. NUEVOS MODELOS DE NEGOCIO EN EL ENTORNO DIGITAL
- La transición digital del modelo de negocio tradicional
- Nuevos modelos de negocio
- Freemium
- Modelo Long Tail
- Modelo Nube y SaaS
- Modelo Suscripción
- Dropshipping
- Afiliación
- Infoproductos y E-Learning
- Otros
UNIDAD DIDÁCTICA 5. PLAN DE TRANSFORMACIÓN DIGITAL
- Diagnóstico de la madurez digital de la empresa
- Análisis de la innovación en la empresa
- Elaboración del roadmap
- Provisión de financiación y recursos tecnológicos
- Implementación del plan de transformación digital
- Seguimiento del plan de transformación digital
UNIDAD DIDÁCTICA 4. CASOS DE ÉXITO EN LA TRANSFORMACIÓN DIGITAL
- BBVA y la empresa inteligente
- DKV Salud y #MédicosfrentealCOVID
- El Corte Inglés
- Cepsa y su apuesta por los servicios cloud de AWS
UNIDAD DIDÁCTICA 6. EL NUEVO CLIENTE DIGITAL
- Rediseñando el customer experience
- La transformación de los canales de distribución: omnicanalidad
- Plan de marketing digital
- Buyer´s Journey
- Growth Hacking: estrategia de crecimiento
- El nuevo rol del marketing en el funnel de conversión
UNIDAD DIDÁCTICA 7. NUEVOS MERCADOS, NUEVAS OPORTUNIDADES
- Oportunidades de innovación derivadas de la globalización
- Como Inventar Mercados a través de la Innovación
- Etapas de desarrollo y ciclos de vida
- Incorporación al mercado
- Metodologías de desarrollo
UNIDAD DIDÁCTICA 8. LA INNOVACIÓN EN LOS PROCESOS ORGANIZATIVOS
- La transformación digital de la cadena de valor
- La industria 4.0
- Adaptación de la organización a través del talento y la innovación
- Modelos de proceso de innovación
- Gestión de innovación
- Sistema de innovación
- Cómo reinventar las empresas innovando en procesos
- Innovación en Procesos a través de las TIC
- El Comercio Electrónico: innovar en los canales de distribución
- Caso de estudio voluntario: La innovación según Steve Jobs
- Caso Helvex: el cambio continuo
- La automatización de las empresas: RPA, RBA y RDA
MÓDULO 2. BIG DATA
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
- ¿Qué es Big Data?
- La era de las grandes cantidades de información. Historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open Data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
- Diagnóstico inicial
- Diseño del proyecto
- Proceso de implementación
- Monitorización y control del proyecto
- Responsable y recursos disponibles
- Calendarización
- Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. ECOSISTEMA HADOOP
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
UNIDAD DIDÁCTICA 6. WEKA Y DATA MINING
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
MÓDULO 3. BUSINESS INTELLIGENCE
UNIDAD DIDÁCTICA 1. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
- Definiendo el concepto de Business Intelligence y sociedad de la información
- Arquitectura de una solución de Business Intelligence
- Business Intelligence en los departamentos de la empresa
- Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
- Sistemas operacionales y Procesos ETL en un sistema de BI
- Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 2. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
- Cuadros de Mando Integrales (CMI)
- Sistemas de Soporte a la Decisión (DSS)
- Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 3. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de textos y Web Mining
- Data mining y marketing
UNIDAD DIDÁCTICA 4. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
- Aproximación al concepto de DataMart
- Procesos de extracción, transformación y carga de datos (ETL)
- Data Warehouse
- Herramientas de Explotación
- Herramientas para el desarrollo de cubos OLAP
UNIDAD DIDÁCTICA 5. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
- Visión General. ¿Por qué DataWarehouse?
- Estructura y Construcción
- Fases de implantación
- Características
- Data Warehouse en la nube
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A LA VISUALIZACIÓN DE DATOS
- ¿Qué es la visualización de datos?
- Importancia y herramientas de la visualización de datos
- Visualización de datos: Principios básicos
UNIDAD DIDÁCTICA 7. TABLEAU
- ¿Qué es Tableau? Usos y aplicaciones
- Tableau Server: Arquitectura y Componentes
- Instalación Tableau
- Espacio de trabajo y navegación
- Conexiones de datos en Tableau
- Tipos de filtros en Tableau
- Ordenación de datos, grupos, jerarquías y conjuntos
- Tablas y gráficos en Tableau
UNIDAD DIDÁCTICA 8. POWERBI
- Business Intelligence en Excel
- Herramientas Powerbi
MÓDULO 4. METODOLOGÍA DE LA INVESTIGACIÓN
UNIDAD DIDÁCTICA 1. EL CONOCIMIENTO CIENTÍFICO - CONCEPTO DE INVESTIGACIÓN
- La investigación científica: proceso de descubrimiento y construcción del conocimiento
- El ejercicio profesional y el uso de insumos variados en la ciencia y tecnología
- Origen de un proceso de Investigación y opciones paradigmáticas
UNIDAD DIDÁCTICA 2. IDENTIFICACIÓN Y FORMULACIÓN DE PROBLEMAS PARA LA INVESTIGACIÓN
- Construcción de un marco conceptual y antecedentes como parte de una iniciativa de Investigación
- Actuación sobre el problema, propósito y objetivo
UNIDAD DIDÁCTICA 3. VARIABLES O FACTORES DE INTERÉS - INDICADORES Y FUENTES DE DATOS
- Definiciones claves
- Delimitación y justificación de cada Investigación
- Revisión de literatura relevante y sustentación de las variables en el marco de un proceso de investigación
- Identificación, selección, clasificación y uso de fuentes y sustentación de las variables e hipótesis
UNIDAD DIDÁCTICA 4. PROCEDIMIENTO GENERAL
- Diseño
- Universo
- Muestreo
- Instrumentación
- Recolección y procesamiento de datos
- Análisis, interpretación y reporte de resultados
MÓDULO 5. CIENCIA DE DATOS: DATA SCIENCE
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Modelo de datos
- Tipos de datos
- Claves primarias
- Índices
- El valor NULL
- Claves ajenas
- Vistas
- Lenguaje de descripción de datos (DDL)
- Lenguaje de control de datos (DCL)
UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASE DE DATOS NOSQL, MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y usos de MongoDB
- Primeros pasos con MongoDB: Instalación y Shell de comandos
- Creando nuestra primera base de datos NoSQL: Modelo e inserción de datos
- Actualización de datos en MongoDB: Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 5. PYTHON Y EL ANÁLISIS DE DATOS
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python Dream Team del Big Data
UNIDAD DIDÁCTICA 6. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 7. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 8. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 6. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
- Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
- Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
MÓDULO 7. MACHINE LEARNING
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
- Machine Learning
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
UNIDAD DIDÁCTICA 7. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 8. SISTEMAS NEURONALES
- Redes neuronales
- Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 9. ESTRATEGIAS DE APRENDIZAJE
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
MÓDULO 8. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
MÓDULO 9. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
- Introducción a la Inteligencia artificial
- El Test de Turing
- Agentes Inteligentes
- Aplicaciones de la inteligencia artificial
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel
MÓDULO 10. INTERNET DE LAS COSAS
UNIDAD DIDÁCTICA 1. INTERNET DE LAS COSAS
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 2. TECNOLOGÍAS APLICADAS A INTERNET DE LAS COSAS
- La relación entre M2M e IoT
- IoT y Smart Cities
- Los sistemas inteligentes de transporte
- Smart Home
UNIDAD DIDÁCTICA 3. DISPOSITIVOS Y APLICACIONES IOT
- Dispositivos e IoT
- Interfaces
- Impresión 3D
UNIDAD DIDÁCTICA 4. SEGURIDAD EN IOT
- La seguridad TIC
- Tipos de seguridad TIC
- Vulnerabilidades de IoT
- Necesidades de seguridad específicas de IoT
UNIDAD DIDÁCTICA 5. SISTEMAS ENERGÉTICOS BASADOS EN IOT
- La importancia de la eficiencia energética
- Las fuentes de consumo
- IoT como gran aliado de las energías renovables
- Microrredes
UNIDAD DIDÁCTICA 6. SISTEMAS CIBERFÍSICOS
- Contexto Sistemas Ciberfísicos (CPS)
- Características CPS
- Componentes CPS
- Ejemplos de uso
- Retos y líneas futuras
UNIDAD DIDÁCTICA 7. INTERNET DE LAS COSAS CON ARDUINO
- Introducción a Arduino
- Características
- Objetivos
- Una vuelta por el pasado
- El microcontrolador
- Componentes hardware
MÓDULO 11. ROBÓTICA Y AUTOMATIZACIÓN INDUSTRIAL
UNIDAD DIDÁCTICA 1. CONCEPTOS Y EQUIPOS UTILIZADOS EN AUTOMATIZACIÓN INDUSTRIAL
- Conceptos previos
- Objetivos de la automatización
- Grados de automatización
- Clases de automatización
- Equipos para la automatización industrial
- Diálogo Hombre-máquina, HMI y SCADA
UNIDAD DIDÁCTICA 2. PRINCIPIOS ELÉCTRICOS Y ELECTRO-MAGNÉTICOS
- Principios y propiedades de la corriente eléctrica
- Fenómenos eléctricos y electromagnéticos
- Medida de magnitudes eléctricas. Factor de potencia
- Leyes utilizadas en el estudio de circuitos eléctricos
- Sistemas monofásicos. Sistemas trifásicos
UNIDAD DIDÁCTICA 3. INSTALACIONES ELÉCTRICAS APLICADAS A INSTALACIONES AUTOMATIZADAS
- Tipos de motores y parámetros fundamentales
- Procedimientos de arranque e inversión de giro en los motores
- Sistemas de protección de líneas y receptores eléctricos
- Variadores de velocidad de motores. Regulación y control
- Dispositivos de protección de líneas y receptores eléctricos
UNIDAD DIDÁCTICA 4. COMPONENTES DE AUTOMATISMOS ELÉCTRICOS
- Automatismos secuenciales y continuos. Automatismos cableados
- Elementos empleados en la realización de automatismos: elementos de operador, relé, sensores y transductores
- Cables y sistemas de conducción de cables
- Técnicas de diseño de automatismos cableados para mando y potencia
- Técnicas de montaje y verificación de automatismos cableados
UNIDAD DIDÁCTICA 5. REGLAJE Y AJUSTES DE INSTALACIONES AUTOMATIZADAS
- Reglajes y ajustes de sistemas mecánicos, neumáticos e hidráulicos
- Reglajes y ajustes de sistemas eléctricos y electrónicos
- Ajustes de Programas de PLC entre otros
- Reglajes y ajustes de sistemas electrónicos
- Reglajes y ajustes de los equipos de regulación y control
- Informes de montaje y de puesta en marcha
UNIDAD DIDÁCTICA 6. ROBÓTICA. EVOLUCIÓN Y PRINCIPALES CONCEPTOS
- Introducción a la robótica
- Contexto de la robótica industrial
- Mercado actual de los brazos manipuladores
- Qué se entiende por Robot Industrial
- Elementos de un sistema robótico
- Subsistemas de un robot
- Tareas desempeñadas con robótica
- Clasificación de los robots
UNIDAD DIDÁCTICA 7. INCORPORACIÓN DEL ROBOT EN UNA LÍNEA AUTOMATIZADA
- El papel de la Robótica en la automatización
- Interacción de los robots con otras máquinas
- La célula robotizada
- Estudio técnico y económico del robot
- Normativa
- Accidentes y medidas de seguridad
UNIDAD DIDÁCTICA 8. CARACTERÍSTICAS TÉCNICAS Y MORFOLÓGICAS DE LOS ROBOTS
- Componentes del brazo robot
- Características y capacidades del robot
- Definición de grados de libertad
- Definición de capacidad de carga
- Definición de velocidad de movimiento
- Resolución espacial, exactitud, repetibilidad y flexibilidad
- Definición de volumen de trabajo
- Consideraciones sobre los sistemas de control
- Morfología de los robots
- Tipo de coordenadas cartesianas. Voladizo y pórtico
- Tipología cilíndrica
- Tipo esférico
- Brazos robots universal
UNIDAD DIDÁCTICA 9. EQUIPOS ACTUADORES
- Tipología de actuadores y transmisiones
- Funcionamiento y curvas características
- Funcionamiento de los Servomotores
- Motores paso a paso
- Actuadores Hidráulicos
- Actuadores Neumáticos
- Estudio comparativo
- Tipología de transmisiones
UNIDAD DIDÁCTICA 10. SENSORES EN ROBÓTICA
- Dispositivos sensoriales
- Características técnicas
- Puesta en marcha de sensores
- Sensores de posición no ópticos
- Sensores de posición ópticos
- Sensores de velocidad
- Sensores de proximidad
- Sensores de fuerza
- Visión artificial
UNIDAD DIDÁCTICA 11. LA UNIDAD CONTROLADORA
- El controlador
- Hardware
- Métodos de control
- El procesador en un controlador robótico
- Ejecución a tiempo real
UNIDAD DIDÁCTICA 12. ELEMENTOS TERMINALES Y APLICACIONES DE TRASLADO. PICK AND PLACE
- Elementos y actuadores terminales de robots
- Conexión entre la muñeca y la herramienta final
- Utilización de robots para traslado de materiales y carga/descarga automatizada. Pick and place
- Aplicaciones de traslado de materiales. Pick and place
- Cogida y sujeción de piezas por vacío. Ventosas
- Imanes permanentes y electroimanes
- Pinzas mecánicas para agarre
- Sistemas adhesivos
- Sistemas fluídicos
- Agarre con enganche
MÓDULO 12. DIGITAL TWINS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A DIGITAL TWINS
- ¿Qué es Digital Twins?
- Campos de aplicación de Digital Twins
- Uso de la inteligencia artificial y el Machine Learning en Digital Twins
- Digital Twins como herramienta en la producción
- Monitorización del gemelo digital en la toma de decisiones
- Comunicación entre Sistema real y Digital Twin
- Optimización del matenimiento con Digital Twins
UNIDAD DIDÁCTICA 2. SIMULACIÓN DE PRODUCCIÓN DE FABRICACIÓN MECÁNICA
- Concepto, clasificación y aplicaciones
- Gestión del reloj en la simulación discreta
- Simulación aleatoria, obtención de muestras y análisis de resultados
- Introducción a los lenguajes de simulación
UNIDAD DIDÁCTICA 3. CONTEXTO DE LA INGENIERÍA SIMULTANEA Y CICLO DE VIDA DEL PRODUCTO
- Antecedentes y surgimiento de las técnicas de ingeniería simultanea
- Control de la producción desde el diseño
- Diseño para seis sigma DFSS
- Definición y tendencias de la Ingeniería Concurrente
- Ingeniería convencional VS ingeniería concurrente
- Fundamentos y elementos comunes las herramientas de la ingeniería concurrente: las T´s
- Ciclo de vida del producto
- Herramientas “Disign for X”
- Ejemplos de aplicación de la ingeniería simultanea
UNIDAD DIDÁCTICA 4. INTEGRACIÓN DE LA INGENIERÍA CONCURRENTE CON EL SISTEMA DE GESTIÓN DE CALIDAD
- Paralelismos entre calidad e ingeniería simultánea
- Herramientas de mejora de la calidad
- El aseguramiento de la calidad: la ISO y PDCA
- La gestión de la calidad total: EFQM
- Diagrama Causa-Efecto
- Diagrama de Pareto
- Círculos de Control de Calidad
UNIDAD DIDÁCTICA 5. FUNDAMENTOS DE SISTEMAS DE CONTROL Y SUPERVISIÓN DE PROCESOS: SCADA Y HMI
- Contexto evolutivo de los sistemas de visualización
- Sistemas avanzados de organización industrial: ERP y MES
- Consideraciones previas de supervisión y control
- El concepto de “tiempo real” en un SCADA
- Conceptos relacionados con SCADA
- Definición y características del sistemas de control distribuido
- Sistemas SCADA frente a DCS
- Viabilidad técnico económica de un sistema SCADA
- Mercado actual de desarrolladores SCADA
- PC industriales y tarjetas de expansión
- Pantallas de operador HMI
- Características de una pantalla HMI
- Software para programación de pantallas HMI
- Dispositivos tablet PC
UNIDAD DIDÁCTICA 6. BUSES Y REDES INDUSTRIALES. CONCEPTOS INICIALES
- Buses de campo: aplicación y fundamentos
- Evaluación de los buses industriales
- Diferencias entre cableado convencional y cableado con Bus
- Selección de un bus de campo
- Funcionamiento y arquitectura de nodos y repetidores
- Conectores normalizados
- Normalización
- Comunicaciones industriales aplicadas a instalaciones en Domótica e Inmótica
- Buses propietarios y buses abiertos
- Tendencias
- Gestión de redes
UNIDAD DIDÁCTICA 7. FUNCIONAMIENTO Y APLICACIÓN DE LOS PRINCIPALES BUSES INDUSTRIALES
- Clasificación de los buses
- AS-i (Actuator/Sensor Interface)
- DeviceNet
- CANopen (Control Area Network Open)
- SDS (Smart Distributed System)
- InterBus
- WorldFIP (World Factory Instrumentation Protocol)
- HART (Highway Addressable Remote Transducer)
- P-Net
- BITBUS
- ARCNet
- CONTROLNET
- PROFIBUS (PROcess FIeld BUS)
- FIELDBUS FOUNDATION
- MODBUS
- ETHERNET INDUSTRIAL
UNIDAD DIDÁCTICA 8. GMAO - GESTIÓN DEL MANTENIMIENTO ASISTIDO POR ORDENADOR
- Que es GMAO
- Que es CMMS - GMAC
- Ventajas de utilizar Programas GMAO - Software GMAO
- Los mejores Programas GMAO - Software GMAO
- Módulos de un GMAOComo elegir un Programa GMAO - Software GMAOSoftware de mantenimiento gratuito PMX-PRO
MÓDULO 13. SEMINARIO DE TESIS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y TRANSFONDO
- Introducción
- Antecedentes
- Marco Contextual
- Planteamiento del problema y preguntas de investigación
- Justificación del problema de investigación
- Objetivo general y específicos
- Variables e indicadores
- Definición de términos
UNIDAD DIDÁCTICA 2. REVISIÓN DE LITERATURA
- Introducción
- Revisión de literatura referente al estudio a realizar
UNIDAD DIDÁCTICA 3. METODOLOGÍA
- Introducción
- Tipo de Estudio
- Descripción de la población y muestra
- Descripción del Instrumento de investigación
- Validación y confiabilidad del Instrumento de investigación
- Procedimientos
- Análisis estadísticos
- Alcances y límites del estudio
UNIDAD DIDÁCTICA 4. PRESENTACIÓN DE LOS RESULTADOS
- Introducción
- Presentación de Resultados
- UDIDAD DIDÁCTICA 5. DISCUSIÓN
- Introducción
- Análisis
- Conclusiones
- Recomendaciones
- Referencias
- Anexos
MÓDULO 14. MACHINE LEARNING CON ARDUINO Y TENSORFLOW 2.0
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y PRIMEROS PASOS
- ¿Qué es la inteligencia artificial?
- Hardware y software unidos por la Inteligencia Artificial
- Inteligencia Artificial y Visión Artificial
- Arduino: introducción
UNIDAD DIDÁCTICA 2. PREPARACIÓN DE ARDUINO Y CONFIGURACIÓN DE ENTORNO PYTHON
- Instalación de Arduino
- Configurando tu Arduino para Python
UNIDAD DIDÁCTICA 3. CODIFICACIÓN Y CONTROL DE ARDUINO CON PYTHON
- Control de Arduino
UNIDAD DIDÁCTICA 4. MANEJO DE ENTRADAS ANALÓGICAS CON PYTHON
- Manejo de entradas
- Entradas analógicas
UNIDAD DIDÁCTICA 5. USO DE SALIDAS ANALÓGICAS
- Salidas analógicas
- Valores analógicos en Arduino
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A MACHINE LEARNING
- Introducción al machine learning
- Aprendizaje supervisado
- Aprendizaje no supervisado
UNIDAD DIDÁCTICA 7. REDES NEURONALES, SERIES TEMPORALES Y PROBLEMAS DE REGRESIÓN
- Redes neuronales y deep learning
- Series Temporales
UNIDAD DIDÁCTICA 8. OBTENCIÓN DE PARÁMETROS EN ARDUINO Y GENERACIÓN DE CONJUNTOS DE DATOS
- Funciones y parámetros
- Variables y constantes especializadas
- Estructura de control
UNIDAD DIDÁCTICA 9. PROCESAMIENTO DE DATOS Y ETAPA DE ENTRENAMIENTO
- Introducción
- ¿Qué son los datos de entrenamiento de IA?
- ¿Por qué se requieren datos de entrenamiento de IA?
- ¿Cuántos datos son adecuados?
- ¿Qué afecta la calidad de los datos en el entrenamiento?
UNIDAD DIDÁCTICA 10. CREACIÓN DE RED NEURONAL ARTIFICIAL Y APLICACIONES CON ARDUINO Y TENSORFLOW CON KERAS
- Crear red neural paso a paso
- Redes neuronales: Aprendizaje
- Otras redes neuronales
MÓDULO 15. VISIÓN ARTIFICIAL EN INDUSTRIA 4.0 CON PYTHON Y OPENCV
UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
- La visión artificial: definiciones y aspectos principales
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
- Ópticas
- Iluminación
- Cámaras
- Sistemas 3D
- Sensores
- Equipos compactos
- Metodologías para la selección del hardware
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
- Algoritmos
- Software
- Segmentación e interpretación de imágenes
- Metodologías para la selección del software
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
- Aplicaciones clásicas: discriminación, detección de fallos…
- Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
UNIDAD DIDÁCTICA 5. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
UNIDAD DIDÁCTICA 6. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
UNIDAD DIDÁCTICA 7. TRATAMIENTO DE IMÁGENES
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
UNIDAD DIDÁCTICA 8. HISTOGRAMAS Y TEMPLATE MATCHING
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 9. COLORES Y ESPACIOS DE COLOR
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 10. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
UNIDAD DIDÁCTICA 11. APRENDIZAJE AUTOMÁTICO
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)
MÓDULO 16. CIENCIAS DEL COMPORTAMIENTO, BIG DATA, INTELIGENCIA ARTIFICIAL E INTERNET OF BEHAVIORS (IOB)
UNIDAD DIDÁCTICA 1. MARKETING, MERCHANDISING Y PUBLICIDAD EN IOB
- Internet of Behavior
UNIDAD DIDÁCTICA 2. CIENCIAS COGNITIVAS DEL COMPORTAMIENTO
- Ciencia cognitiva
UNIDAD DIDÁCTICA 3. NEUROPSICOLOGÍA Y CÓMO CAPTAR LA ATENCIÓN DE UN USUARIO
- Neuropsicología
UNIDAD DIDÁCTICA 4. PRODUCTOS Y CONTENIDOS PERSONALIZADOS GRACIAS AL INTERNET OF BEHAVIORS (IOB)
- Personalización IOB
UNIDAD DIDÁCTICA 5. VISIÓN POR COMPUTADORA Y ANÁLISIS FACIAL
- La visión Artificial
UNIDAD DIDÁCTICA 6. PROCESAMIENTO AUTOMÁTICO DE IDIOMAS
- Procesamiento del lenguaje natural
UNIDAD DIDÁCTICA 7. ANÁLISIS DE COMPORTAMIENTO Y SEGURIDAD OPERACIONAL
- Análisis de comportamiento
UNIDAD DIDÁCTICA 8. DEL BIG DATA AL ANÁLISIS DE SENTIMIENTOS
- Análisis de opinión
MÓDULO 17.TRABAJO DE TESIS
UNIDAD DIDÁCTICA 1. PROBLEMA E HIPÓTESIS
- Selección del problema
- Ejemplo de problema
- Planteamiento del problema
- Definición del problema
- Definición de conceptos
- Límites de la investigación
- Formulación de hipótesis
- Sugerencias para la elaboración de hipótesis
- Hipótesis de investigación
- Hipótesis de nulidad
- Nivel de significación
- Las variables
- Clasificación
- Papel de las variables en las hipótesis
- Investigación descriptiva
- Investigación explicativa
- Investigaciones correlacionales
- Estudios transversales y longitudinales
- Estudios cuantitativos y cualitativos
UNIDAD DIDÁCTICA 2. INSTRUMENTOS DE INVESTIGACIÓN Y PRODUCCIÓN CIENTÍFICA
- La observación
- Los cuestionarios
- La entrevista
- El análisis de contenidos
- Análisis de datos
- Mecanismos y procedimientos para el procesamiento de datos
- Instrumentos estadísticos: porcentajes, el modo, la media, la mediana y la desviación estándar
UNIDAD DIDÁCTICA 3. PRESENTACIÓN DE DATOS
- Los gráficos lineales
- Los gráficos de barras
- Los gráficos circulares
- Los cuadros de área o volumen
- Los mapas
- Los esquemas
- Matrices
UNIDAD DIDÁCTICA 4. ELABORACIÓN DEL PROYECTO
- Título de tema
- Introducción
- Planteamiento del problema
- Objetivos
- Hipótesis
- Marco teórico
- Metodología
- Tipo de estudio
- Instrumento para la recolección de datos
- Procedimientos
- Universo y muestra
- Esquema de posibles capítulos
- Bibliografía y referencias bibliográficas
- Anexos