Cursos gratuitos

Curso Gratuito Maestria en Innovación e Investigación en Informática

Duración: 1500
EURO62e7ef2260512
Valoración: 4.7 /5 basada en 86 revisores
cursos gratuitos

Para qué te prepara este curso subvencionado Curso Gratuito Maestria en Innovación e Investigación en Informática:

Gracias a esta Maestría en Innovación e Investigación en Informática aprenderás todas estas tecnologías disruptivas y cómo afectan a la innovación e investigación informática. Utilizarás información masiva gracias al Big Data, adoptarás los sistemas ciberfísicos, el IoT y Digital Twins en la industria 4.0, conocerás el ecosistema Blockchain y sus diferentes usos y aplicarás algoritmos y modelos de inteligencia artificial y visión artificial.

A quién va dirigido:

Esta Maestría en Innovación e Investigación en Informática está orientado, principalmente, a profesionales experimentados y con un gran interés en las tecnologías más disruptivas y con más futuro actualmente en el campo de la informática. Además, también es perfecto para estudiantes informáticos que quieran desarrollar su carrera hacia alguna/s de estas tecnologías.

Objetivos de este curso subvencionado Curso Gratuito Maestria en Innovación e Investigación en Informática:

- Analizar información masiva gracias al Big Data y sus principales herramientas de analítica. - Entender cómo el Internet de las cosas (IoT) y los sistemas ciberfísicos permiten el desarrollo de la industria 4.0. - Descubrir la filosofía BIM y cómo, junto con el IoT, permite el desarrollo de edificios inteligentes (Smart Buildings). - Utilizar gemelos digitales (Digital Twins) para simular escenarios reales en entornos virtuales. - Conocer todo el ecosistema Blockchain, que principios tecnológicos tiene y sus principales campos de aplicación. - Utilizar inteligencia artificial y programación de lenguaje natural (PLN) para implementar chatbots. - Implementar modelos de visión artificial aplicables a la industria 4.0 con Python y OpenCV.

Salidas Laborales:

Al tratarse en esta Maestría en Innovación e Investigación en Informática tantas tecnologías disruptivas, se abre un inmenso abanico de posibilidades en el ámbito laboral. Más en concreto, podrás optar a puestos como Big Data Scientist, Responsable de desarrollo de Industria 4.0, Blockchain Developer, IA Engineer o Programador de modelos de visión artificial.

 

Resumen:

El I+D+I es la base para evolucionar en cualquier sector, pero en el ámbito de la informática es fundamental adaptarse a las tecnologías, ecosistemas y plataformas más disruptivas. Gracias a esta Maestría en Innovación e Investigación en Informática aprenderás todas estas tecnologías disruptivas y cómo afectan a la innovación e investigación informática. Utilizarás información masiva gracias al Big Data, adoptarás los sistemas ciberfísicos, el IoT y Digital Twins en la industria 4.0, conocerás el ecosistema Blockchain y sus diferentes usos y aplicarás algoritmos y modelos de inteligencia artificial y visión artificial. Contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión

Titulación:

Titulación de Maestría en Innovación e Investigación en Informática con 1500 horas expedida por ESIBE (ESCUELA IBEROAMERICANA DE POSTGRADO).

Metodología:

Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.

Temario:


MÓDULO 1. BIG DATA ANALYTICS TOOLS

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. BIG DATA Y MARKETING
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
UNIDAD DIDÁCTICA 6. DEL BIG DATA AL LINKED OPEN DATA
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
UNIDAD DIDÁCTICA 7. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL. MONGODB
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 9. ECOSISTEMA HADOOP
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
UNIDAD DIDÁCTICA 10. WEKA Y DATA MINING
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
UNIDAD DIDÁCTICA 11. PENTAHO
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho

MÓDULO 2. IOT Y SISTEMAS CIBERFÍSICOS EN LA INDUSTRIA 4.0 Y SMART BUILDING

UNIDAD DIDÁCTICA 1. INTERNET DE LAS COSAS
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 2. SISTEMAS CIBERFÍSICOS
  1. Contexto Sistemas Ciberfísicos (CPS)
  2. Características CPS
  3. Componentes CPS
  4. Ejemplos de uso
  5. Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 3. CONCEPTOS Y EQUIPOS UTILIZADOS EN AUTOMATIZACIÓN INDUSTRIAL
  1. Conceptos previos
  2. Objetivos de la automatización
  3. Grados de automatización
  4. Clases de automatización
  5. Equipos para la automatización industrial
  6. Diálogo Hombre-máquina, HMI y SCADA
UNIDAD DIDÁCTICA 4. INDUSTRIA 4.0
  1. ¿Qué es la Industria 4.0?
  2. Sensores y captación de información
  3. Ciclo de vida de los productos en la Industria 4.0
  4. Modelos de negocio basados en la industria 4.0
  5. IoT industrial
UNIDAD DIDÁCTICA 5. SEGURIDAD INFORMÁTICA EN LA INDUSTRIA 4.0
  1. Industria 4.0
  2. Necesidades en ciberseguridad en la Industria 4.0
UNIDAD DIDÁCTICA 6. BIM
  1. Introducción
  2. Filosofía BIM
  3. Sector AEC
  4. Exigencias del mercado
  5. Del BIM al CIM
  6. Software BIM
UNIDAD DIDÁCTICA 7. QUE ES EL SMART BUILDING
  1. El concepto de Smart Building
  2. El crecimiento del Smart Building desde su inicio
  3. El mercado del Smart Building en España
UNIDAD DIDÁCTICA 8. ÁREAS EN LAS QUE SE APLICA EL SMART BUILDING
  1. Climatización
  2. Iluminación
  3. Seguridad
  4. Telecomunicaciones
  5. Eficiencia energética
  6. Monitorización

MÓDULO 3. DIGITAL TWINS

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A DIGITAL TWINS
  1. ¿Qué es Digital Twins?
  2. Campos de aplicación de Digital Twins
  3. Uso de la inteligencia artificial y el Machine Learning en Digital Twins
  4. Digital Twins como herramienta en la producción
  5. Monitorización del gemelo digital en la toma de decisiones
  6. Comunicación entre Sistema real y Digital Twin
  7. Optimización del matenimiento con Digital Twins
UNIDAD DIDÁCTICA 2. SIMULACIÓN DE PRODUCCIÓN DE FABRICACIÓN MECÁNICA
  1. Concepto, clasificación y aplicaciones
  2. Gestión del reloj en la simulación discreta
  3. Simulación aleatoria, obtención de muestras y análisis de resultados
  4. Introducción a los lenguajes de simulación
UNIDAD DIDÁCTICA 3. CONTEXTO DE LA INGENIERÍA SIMULTANEA Y CICLO DE VIDA DEL PRODUCTO
  1. Antecedentes y surgimiento de las técnicas de ingeniería simultanea
  2. Control de la producción desde el diseño
  3. Diseño para seis sigma DFSS
  4. Definición y tendencias de la Ingeniería Concurrente
  5. Ingeniería convencional VS ingeniería concurrente
  6. Fundamentos y elementos comunes las herramientas de la ingeniería concurrente: las T´s
  7. Ciclo de vida del producto
  8. Herramientas “Disign for X”
  9. Ejemplos de aplicación de la ingeniería simultanea
UNIDAD DIDÁCTICA 4. INTEGRACIÓN DE LA INGENIERÍA CONCURRENTE CON EL SISTEMA DE GESTIÓN DE CALIDAD
  1. Paralelismos entre calidad e ingeniería simultánea
  2. Herramientas de mejora de la calidad
  3. El aseguramiento de la calidad: la ISO y PDCA
  4. La gestión de la calidad total: EFQM
  5. Diagrama Causa-Efecto
  6. Diagrama de Pareto
  7. Círculos de Control de Calidad
UNIDAD DIDÁCTICA 5. FUNDAMENTOS DE SISTEMAS DE CONTROL Y SUPERVISIÓN DE PROCESOS: SCADA Y HMI
  1. Contexto evolutivo de los sistemas de visualización
  2. Sistemas avanzados de organización industrial: ERP y MES
  3. Consideraciones previas de supervisión y control
  4. El concepto de “tiempo real” en un SCADA
  5. Conceptos relacionados con SCADA
  6. Definición y características del sistemas de control distribuido
  7. Sistemas SCADA frente a DCS
  8. Viabilidad técnico económica de un sistema SCADA
  9. Mercado actual de desarrolladores SCADA
  10. PC industriales y tarjetas de expansión
  11. Pantallas de operador HMI
  12. Características de una pantalla HMI
  13. Software para programación de pantallas HMI
  14. Dispositivos tablet PC
UNIDAD DIDÁCTICA 6. BUSES Y REDES INDUSTRIALES. CONCEPTOS INICIALES
  1. Buses de campo: aplicación y fundamentos
  2. Evaluación de los buses industriales
  3. Diferencias entre cableado convencional y cableado con Bus
  4. Selección de un bus de campo
  5. Funcionamiento y arquitectura de nodos y repetidores
  6. Conectores normalizados
  7. Normalización
  8. Comunicaciones industriales aplicadas a instalaciones en Domótica e Inmótica
  9. Buses propietarios y buses abiertos
  10. Tendencias
  11. Gestión de redes
UNIDAD DIDÁCTICA 7. FUNCIONAMIENTO Y APLICACIÓN DE LOS PRINCIPALES BUSES INDUSTRIALES
  1. Clasificación de los buses
  2. AS-i (Actuator/Sensor Interface)
  3. DeviceNet
  4. CANopen (Control Area Network Open)
  5. SDS (Smart Distributed System)
  6. InterBus
  7. WorldFIP (World Factory Instrumentation Protocol)
  8. HART (Highway Addressable Remote Transducer)
  9. P-Net
  10. BITBUS
  11. ARCNet
  12. CONTROLNET
  13. PROFIBUS (PROcess FIeld BUS)
  14. FIELDBUS FOUNDATION
  15. MODBUS
  16. ETHERNET INDUSTRIAL
UNIDAD DIDÁCTICA 8. GMAO - GESTIÓN DEL MANTENIMIENTO ASISTIDO POR ORDENADOR
  1. Que es GMAO
  2. Que es CMMS - GMAC
  3. Ventajas de utilizar Programas GMAO - Software GMAO
  4. Los mejores Programas GMAO - Software GMAO
  5. Módulos de un GMAOComo elegir un Programa GMAO - Software GMAO
  6. Software de mantenimiento gratuito PMX-PRO

MÓDULO 4. ECOSISTEMA BLOCKCHAIN

UNIDAD DIDÁCTICA 1. DESCENTRALIZACIÓN UNIVERSAL. EL BLOCKCHAIN
  1. ¿Qué es BlockChain? Introducción e historia
  2. Criptomonedas
  3. Redes Blockchain: Pública, Privada e Híbrida
  4. Campos de aplicación de la tecnología Blockchain
  5. Pros y contras de Blockchain
UNIDAD DIDÁCTICA 2. CONTRIBUCIÓN DE LA BLOCKCHAIN A LA TRANSFORMACIÓN DIGITAL: POSIBILIDADES Y LIMITACIONES
  1. Redes blockchain: una solución en la transformación digital
  2. Interoperabilidad y compatibildad entre plataformas blockchain
  3. Riesgos y limitaciones en redes blockchain
  4. Desafíos éticos derivados de la descentralización
UNIDAD DIDÁCTICA 3. CRIPTOGRAFÍA
  1. Perspectiva histórica y objetivos de la criptografía
  2. Teoría de la información
  3. Propiedades de la seguridad que se pueden controlar mediante la aplicación de la criptografía
  4. Criptografía de clave privada o simétrica
  5. Criptografía de clave pública o asimétrica
  6. Algoritmos criptográficos más frecuentemente utilizados
  7. Funciones Hash y los criterios para su utilización
  8. Protocolos de intercambio de claves
  9. Herramientas de Cifrado
UNIDAD DIDÁCTICA 4. BLOCKHAIN: PRINCIPIOS TECNOLÓGICOS
  1. Aplicaciones descentralizadas o DAPP
  2. Redes P2P
  3. Elementos de la arquitectura
  4. Principios de funcionamiento
UNIDAD DIDÁCTICA 5. ANÁLISIS DE LAS LIMITACIONES ACTUALES
  1. Limitaciones del Blockchain en la contratación y propiedad. Aspectos introductorios
  2. Naturaleza del Blockchain
  3. Naturaleza de los Contratos Inteligentes
  4. El Uso de Blockchain en la Contratación de Derechos Personales
  5. Tecnología Blockchain en la Contratación de Derechos Reales
UNIDAD DIDÁCTICA 6. CRIPTODERECHO
  1. Regulación Legal de la Cadena de Bloques
  2. Red descentralizada carente de dueño
  3. Naturaleza y función de las Criptomonedas
  4. Reglamento UE
UNIDAD DIDÁCTICA 7. BLOCKCHAIN AS A SERVICE (BAAS)
  1. ¿Qué es BaaS?
  2. Funcionamientos
  3. Azure Blockchain Workbench
  4. Amazon Blockchain (AWS)

MÓDULO 5. PLN, CHATBOTS E INTELIGENCIA ARTIFICIAL

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
UNIDAD DIDÁCTICA 2. PLN EN PYTHON
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
UNIDAD DIDÁCTICA 6. ¿QUÉ ES UN CHATBOT?
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
UNIDAD DIDÁCTICA 7. RELACIÓN ENTRE IA Y CHATBOTS
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 8. ÁMBITOS DE APLICACIÓN CHATBOTS
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel

MÓDULO 6. VISIÓN ARTIFICIAL EN INDUSTRIA 4.0 CON PYTHON Y OPENCV

UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
  1. La visión artificial: definiciones y aspectos principales
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
UNIDAD DIDÁCTICA 5. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
UNIDAD DIDÁCTICA 6. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
UNIDAD DIDÁCTICA 7. TRATAMIENTO DE IMÁGENES
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
UNIDAD DIDÁCTICA 8. HISTOGRAMAS Y TEMPLATE MATCHING
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 9. COLORES Y ESPACIOS DE COLOR
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 10. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
UNIDAD DIDÁCTICA 11. APRENDIZAJE AUTOMÁTICO
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)
Accede ahora a nuestros cursos y encuentra la más amplia variedad de cursos del mercado, este

curso gratuito le prepara para ser

Al tratarse en esta Maestría en Innovación e Investigación en Informática tantas tecnologías disruptivas, se abre un inmenso abanico de posibilidades en el ámbito laboral. Más en concreto, podrás optar a puestos como Big Data Scientist, Responsable de desarrollo de Industria 4.0, Blockchain Developer, IA Engineer o Programador de modelos de visión artificial.

. ¿A qué esperas para llevar a cabo tus proyectos personales?.

No se han encontrado comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *