Cursos gratuitos

Curso Gratuito Curso Superior en Big Data

Duración: 300
EURO624fc6551c2e0
Valoración: 4.7 /5 basada en 96 revisores
cursos gratuitos

Para qué te prepara este curso subvencionado Curso Gratuito Curso Superior en Big Data:

El Curso Superior en Big Data te introduce en el mundo del Big Data, desarrolla tus habilidades para analizar y explotar cantidades de datos masivas y podrás crear cuadros de mandos para visualizar los datos de la mejor manera posible. Además aprenderás en qué consiste la analítica web y como puedes sacarle provecho. La analítica web así como el Big Data, están jugando un papel cada vez más relevante en las empresas que ven necesario el análisis de datos para conocer patrones de preferencias en usuarios.

A quién va dirigido:

Este curso está dirigido a una gran diversidad de perfiles y es aplicable a cualquier sector, puesto que es adecuado para todas aquellas personas que quieran adquirir conocimientos sobre tecnologías de análisis y procesamiento de datos. Se trata de una acción formativa idónea tanto para recién titulados que deseen ampliar sus oportunidades profesionales así como para profesionales que deseen seguir formándose.

Objetivos de este curso subvencionado Curso Gratuito Curso Superior en Big Data:

- Conocer e identificar las fases de un proyecto Big Data - Aprender los conceptos de Bases de Datos NoSQL, procesamiento distribuido y Data Mining, así como su aplicación. - Crear y gestionar una base de datos en MongoDB y procesar datos con Hadoop - Aprender a crear cuadros de mando (Dashboard). - Comprender el uso de la analítica web para Big Data.

Salidas Laborales:

- Auditor en Sistemas Big Data - Arquitecto de soluciones Big Data - Gestor de Infraestructuras para Big Data - E-commerce & Social Media

 

Resumen:

Actualmente, en muchos ámbitos multisectoriales, la creciente cantidad de datos y el auge del Internet de las cosas (IoT) presentan la necesidad de analizar y procesar toda esta información para la mejora y adecuación de las estrategias de negocio de las empresas. Además, todas las empresas buscan la reducción de sus costes y mediante la aplicación de las técnicas adecuadas de Big Data este objetivo puede cumplirse. Con este Curso Superior en Big Data, se ofrece una formación en las tecnologías y metodologías de análisis de datos, de manera que a través de la integración de la tecnología se desarrollen las habilidades analíticas necesarias para extraer y evaluar los datos de una manera eficaz. En INESEM podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista, avalado por un amplio grupo de tutores especialistas en el sector.

Titulación:

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”

Metodología:

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes. La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. Por último, es necesario notificar la finalización de la acción formativa desde la plataforma para comenzar la expedición del título.

Temario:


MÓDULO 1. BIG DATA INTRODUCTION

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
UNIDAD DIDÁCTICA 8. DEL BIG DATA AL LINKED OPEN DATA
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras

MÓDULO 2. HERRAMIENTAS PARA EXPLOTACIÓN Y ANÁLISIS DE BIG DATA

UNIDAD DIDÁCTICA 1. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL: Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 3. ECOSISTEMA HADOOP
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
UNIDAD DIDÁCTICA 4. WEKA Y DATA MINING
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
UNIDAD DIDÁCTICA 5. PENTAHO UNA SOLUCIÓN OPEN SOURCE PARA BUSINESS INTELLIGENCE
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho

MÓDULO 3. INTRODUCCIÓN A LA PROGRAMACIÓN ESTADÍSTICA

UNIDAD DIDÁCTICA 1. PYTHON Y EL ANÁLISIS DE DATOS
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
UNIDAD DIDÁCTICA 2. R COMO HERRAMIENTA PARA BIG DATA
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop

MÓDULO 4. DATA SCIENCE

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
UNIDAD DIDÁCTICA 3. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
UNIDAD DIDÁCTICA 4. ANÁLISIS DE LOS DATOS
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
Accede ahora a nuestros cursos y encuentra la más amplia variedad de cursos del mercado, este

curso gratuito le prepara para ser

- Auditor en Sistemas Big Data - Arquitecto de soluciones Big Data - Gestor de Infraestructuras para Big Data - E-commerce & Social Media

. ¿A qué esperas para llevar a cabo tus proyectos personales?.

No se han encontrado comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *