Para qué te prepara este curso subvencionado Curso Gratuito Curso en Data Science y Análisis de Datos:
Con este curso Curso en Data Science y Análisis de datos aprenderás a explotar los datos masivos haciendo uso de las técnicas estadísticas y lenguajes de programación más usados en un entorno de Big Data. Serás capaz de visualizar resultados y aplicar algoritmos propios de la ciencia de datos mediante Python y R permitiéndote tomar decisiones estratégicas y optimizar los cálculos.
A quién va dirigido:
El CURSO EN DATA SCIENCE Y ANÁLISIS DE DATOS está dirigido a cualquier persona interesada en formar parte del entorno de la tecnología que engloba el Big Data, especializándose en el análisis y explotación de los datos, así como a profesionales que deseen seguir formándose en un sector cada vez más demandado.
Objetivos de este curso subvencionado Curso Gratuito Curso en Data Science y Análisis de Datos:
Analista de datos Data Sciencist Experto en Big Data Consultor de proyectos Big Data Chief Data Officer (CDO)
Salidas Laborales:
Analista de datos Data Sciencist Experto en Big Data Consultor de proyectos Big Data Chief Data Officer (CDO)
Resumen:
La creciente cantidad de datos y el desarrollo del Internet de las Cosas (IoT), hacen cada vez más presentes los conceptos de Big Data y Business Intelligence en los entornos empresariales, donde el científico de datos tiene un papel fundamental en la explotación de estos datos. Con esta acción formativa podrá ponerse a la vanguardia en el uso de las nuevas tecnologías y algoritmos de análisis que le permitirán desarrollar las habilidades analíticas necesarias para extraer y evaluar los datos de una manera eficaz, permitiéndole un soporte de ayuda en la toma de decisiones estratégicas y optimizando costes. En INESEM podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista, avalado por un amplio grupo de tutores especialistas en el sector.
Titulación:
Título Propio del Instituto Europeo de Estudios Empresariales (INESEM) “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Metodología:
Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes. La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. Por último, es necesario notificar la finalización de la acción formativa desde la plataforma para comenzar la expedición del título.
Temario:
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL Una base de datos relacional
UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASE DE DATOS NOSQL, MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y usos de MongoDB
- Primeros pasos con MongoDB: Instalación y Shell de comandos
- Creando nuestra primera base de datos NoSQL: Modelo e inserción de datos
- Actualización de datos en MongoDB: Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 5. PYTHON Y EL ANÁLISIS DE DATOS
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python Dream Team del Big Data
UNIDAD DIDÁCTICA 6. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 7. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 8. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
curso gratuito le prepara para ser
Analista de datos Data Sciencist Experto en Big Data Consultor de proyectos Big Data Chief Data Officer (CDO)
. ¿A qué esperas para llevar a cabo tus proyectos personales?.