Para qué te prepara este curso subvencionado Curso Gratuito Postgrado en Análisis de Datos en Ciencias Sociales y de la Salud:
Este Postgrado en Análisis de Datos en Ciencias Sociales y de la Salud le prepara para conocer a fondo el ámbito del análisis de datos dentro del entorno de ciencias sociales y de la salud, adquiriendo los conocimientos y técnicas oportunas para realizar análisis de manera profesional y de diferentes formas, con el objetivo de que se haga un trabajo de calidad.
A quién va dirigido:
El Postgrado en Análisis de Datos en Ciencias Sociales y de la Salud está dirigido a todos aquellos profesionales del sector de la investigación y análisis de datos que deseen seguir adquiriendo formación, así como a cualquier persona interesada en dedicarse profesionalmente al entorno que quiera adquirir conocimientos sobre el análisis de datos en ciencias sociales y de la salud.
Objetivos de este curso subvencionado Curso Gratuito Postgrado en Análisis de Datos en Ciencias Sociales y de la Salud:
- Conocer los niveles de indagación: descripción, relacional, explicativo. - Realizar un análisis descriptivo de variables categorías con SPSS. - Realizar análisis descriptivos de variables cuantitativas. - Conocer la inferencia en el contraste de Hipostesis - Ejecutar un análisis de varianza en un factor completamente aleatorio. - Conocer los modelos lineales. - Realizar una regresión logística.
Salidas Laborales:
Investigadores / Profesores / Ciencias sociales y de la salud / Experto en SPSS / Ciencias comportamentales.
Resumen:
Si le interesa el ámbito de las ciencias del comportamiento y la salud y quiere conocer los aspectos fundamentales sobre el análisis de datos en este entorno este es su momento, con el Postgrado en Análisis de Datos en Ciencias Sociales y de la Salud podrá adquirir los conocimientos necesarios para desempeñar esta función de la mejor manera posible. En la sociedad actual en la que vivimos damos mucha importancia a la información, sea en el entorno que sea, en este caso tratamos de conseguir información gracias al análisis de datos dentro de la sociedad, por lo que es importante conocer todo lo referente de este fenómeno. Realizando este Postgrado en Análisis de Datos en Ciencias Sociales y de la Salud conocerá las técnicas de análisis teniendo una visión precisa de este ámbito.
Titulación:
Doble Titulación Expedida por EUROINNOVA BUSINESS SCHOOL y Avalada por la Escuela Superior de Cualificaciones Profesionales
Metodología:
Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.
Temario:
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL ANÁLISIS DE DATOS.
- Que es el análisis de datos.
- Para qué sirve el análisis de datos.
- Niveles de indagación: descripción, relacional, explicativo.
- Escalas de medida.
- Programas informativos para el análisis de datos.
- Ejercicios.
- Clasificatoria de Stevens.
- Rol de las escalas de medida.
UNIDAD DIDÁCTICA 2. CONCEPTOS PREVIOS.
- Tipos de variables.
- Población y muestra.
- Parámetros y estadísticos.
- Muestreo.
- Variables aleatorias.
- Probabilidad.
- Apéndice 2.
- Ejercicios.
- Centro, dispersión y forma de la distribución.
- Espacio muestral y sucesos.
- Conceptos de probabilidad.
- Regla de la multiplicación.
- Regla de la suma.
- Combinatoria (reglas de contar).
- Como seleccionar una muestra aleatoria.
UNIDAD DIDÁCTICA 3. ANÁLISIS DESCRIPTIVO DE VARIABLES CATEGORÍAS.
- Tablas de frecuencias.
- Gráficos para variables categorías.
- Análisis descriptivo de variables categóricas con SPSS.
- Variables dicotómicas.
- Variables politomicas.
- Apéndice 3.
- Ejercicios.
- La distribución binominal.
- La distribución multinominal.
- Tablas de frecuencias con variables de respuesta múltiples.
UNIDAD DIDÁCTICA 4. ANÁLISIS DESCRIPTIVO DE VARIABLES CUANTITATIVAS.
- Cuantiles.
- Tendencia central.
- Dispersión.
- Amplitudes.
- Desviaciones promedio.
- Varianza y desviación típica.
- Comparación entre estadísticos de dispersión.
- Coeficientes de variación.
- Forma de la distribución.
- Gráficos para variables cuantitativas.
- Índices de asimetría y curtosis.
- Análisis descriptivo de variables cuantitativas con SPSS.
- Análisis descripción y exploratorio.
- Apéndice 4.
- Ejercicios.
- Media aritmética.
- Mediana.
- Estadísticos resistentes.
- Comparación entre estadísticos de tendencia central.
- Reglas de sumatorio.
- Métodos para el cálculo de cuantíales.
- Sintaxis para algunos estadísticos no incluidos en SPSS.
UNIDAD DIDÁCTICA 5. PUNTUACIONES TÍPICAS Y CURVA NORMAL.
- Puntuación típica.
- Curva normal.
- Puntuaciones típicas y curva normal con SPSS.
- Apéndice 5.
- Ejercicios.
- Puntuaciones típicas y percentiles.
- Escalas derivadas.
- Tabla de la curva normal.
- Aproximación de la distribución binominal a la normal.
- La distribución X.
- La distribución t.
UNIDAD DIDÁCTICA 6. LAS DISTRIBUCIONES MUÉSTRALES.
- Que es una distribución muestral.
- Distribución muestral del estadístico media.
- Distribución muestral del estadístico proporción.
- Importancia del tamaño muestral.
- Apéndice 6.
- Ejercicios.
- En caso concreto.
- Otro caso concreto.
- El caso general.
- Valor esperado y varianza del estadístico media.
- Distribución muestral del estadístico varianza.
- El método Monte Carlo.
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA (I). LA ESTIMACIÓN DE PARÁMETROS.
- Que es la inferencia estadística.
- Estimación puntual.
- Estimación por intervalos.
- Apéndice 7.
- Precisión de la estimación y tamaño de la muestra.
- Estimación por máxima verosimilitud.
- Estimación por mínimos cuadrados.
- Ejercicios.
- Propiedades de un buen estimador.
- Como interpretar un intervalo de confianza.
- Intervalo de confianza para el parámetro media.
- Intervalo de confianza para el parámetro proporción.
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN A LA INTERFERENCIA (II). EL CONTRASTE DE HIPÓTESIS.
- El contraste de hipótesis.
- Estimación por intervalos y contraste de hipótesis.
- Clasificación de los contraste de hipótesis.
- Apéndice 8.
- Ejercicios.
- Las hipótesis estadísticas.
- Los supuestos del contraste.
- El estadístico del contraste y su distribución muestral.
- La regla de decisión.
- La decisión.
- Consideraciones sobre el nivel crítico (valor p).
UNIDAD DIDÁCTICA 9. INFERENCIA CON UNA VARIABLE.
- El contraste sobre una proporción (prueba binomial).
- La prueba X de Pearson sobre bondad de ajuste.
- El contraste sobre una media (prueba 7 para una muestra) con SPSS.
- Apéndice 9.
- Relación entre la distribución t, la distribución X y la venganza.
- Supuestos del estadístico X de Pearson.
- El contraste sobre una proporción con SPSS.
- La prueba X de Pearson sobre la bondad de ajuste con SPSS.
UNIDAD DIDÁCTICA 10. INFERENCIA CON DOS VARIABLES CATEGÓRICAS.
- Variables categóricas.
- Tablas de contingencias.
- Gráficos de barra agrupadas.
- Asociación en tablas de contingencias.
- La prueba X de Pearson sobre independencia.
- Medidas de asociación.
- Residuos tipificados.
- Tablas de contingencias y gráficos de barras con SPSS.
- La prueba X de Pearson sobre independencia con SPSS.
- Tipos de frecuencias.
UNIDAD DIDÁCTICA 11. INFERENCIA CON UNA VARIABLE CATEGÓRICA Y UNA CUANTITATIVA.
- La prueba T de Student para muestras independientes.
- Asumiendo variables igualdades.
- Independencia, normalidad e igualdad de varianzas.
- No asumiendo varianzas iguales.
- La prueba T de Student par amuestras independientes con SPSS.
- Apéndice 11.
- La distribución muestral del estadístico T asumiendo.
- El contraste sobre igualdad de varianzas.
UNIDAD DIDÁCTICA 12. INFERENCIA CON DOS VARIABLES CUANTITATIVAS.
- Muestras relacionadas.
- Comparar o relacionar.
- La prueba T DE Student para muestras relacionadas.
- Relación lineal.
- Apéndice 12.
- La prueba T de Student para muestras relacionadas con SPSS.
- Diagramas de dispersión.
- Cuantificación de la intensidad de la relación: la covarianza.
- El coeficiente de correlación de Pearson: R.
- Contraste de hipótesis sobre el parámetro.
- Como interpretar el coeficiente de correlación R.
- Relación y casualidad.
- Relación lineal con SPSS.
- Contraste de hipótesis sobre ?XY = k0 (con k0 =/ 0).
- Contraste de hipótesis sobre dos coeficientes de correlación.
UNIDAD DIDÁCTICA 13. LA INTERFERENCIA ESTADÍSTICA.
- La interferencia estadística.
- El contraste de hipótesis.
- Errores Tipo I y II y potencia de un contraste.
- Tamaño del efecto.
- Clasificación de las contrastes de hipótesis.
- Programas informativos para el análisis de datos.
- Apéndice 13. Calculo de la potencia.
- Curva de potencias.
- Un ejemplo.
- Que significa rechazar y no rechazar la hipótesis nula.
- Contrastes bilaterales y unilaterales.
- Factores de lo que depende la potencia.
UNIDAD DIDÁCTICA 14. INFERENCIAS CON UNA VARIABLE.
- Contraste sobre el centro de una distribución.
- Contrastes sobre la dispersión de una distribución.
- Contrastes sobre la forma de una distribución.
- Apéndice 2.
- La prueba de las rachas.
- La prueba de los cuantiles.
- La prueba sobre el centro de una distribución.
- La prueba de Wikcoxon para una muestra.
- La prueba de los signos para una muestra.
- La prueba T, la de Wilcoxon y de la de los signos.
- Los contrastes sobre el centro de una distribución.
- Los contrastes sobre el centro de una distribución con SPSS.
- La prueba de Kolmogorov-Smirnov sobre bondad de ajuste.
- Los contrastes sobre la forma de una distribución con SPSS.
UNIDAD DIDÁCTICA 15. INFERENCIA CON DOS VARIABLES CATEGÓRICAS.
- Proporciones independientes y relacionadas.
- Homogeneidad marginal y simetría.
- Índices de riesgo.
- Índices de acuerdo.
- El índice de acuerdo Kappa con SPSS.
- Asociación entre variables categóricas ordinales.
- Apéndice 3.
- Simetría relativa.
- Combinación de tablas 2 x 2 (Cochran y Mantel-Haenszel)
- La paradoja de Simpson.
- Medidas de asociación basadas en la reducción proporcional del error.
- Muestras pequeñas: la prueba exacta de Fisher.
- Concordancias y discordancias en una tabla de contingencias.
- Como reproducir una tabla de contingencias en SPSS.
- Simetría con variables dicotómicas: la prueba de McNemar.
- Simetría con variables politónicas: la prueba de Bowker.
- Homogeneidad marginal y simetría con SPSS.
- Riesgo relativo.
- Odds ratio.
- Relación entre el riesgo relativo y la odds ratio.
- Consideraciones sobre la interpretación de los índices de riesgo.
- Los índices de riesgo con SPSS.
- Acuerdo con variables nominales: Kappa.
- Medidas de concordancia-discordancia.
- Medidas de concordancia-discordancia con SPSS.
UNIDAD DIDÁCTICA 16. INFERENCIA CON UNA VARIABLE CATEGÓRICA Y UNA CUANTITATIVA.
- La prueba T de Student para muestras independientes.
- La prueba de Mann-Whitney.
- La prueba de Kruskal-Wallis.
- Medidas del tamaño del efecto.
- Calculo de la potencia y del tamaño muestral.
- Contrastes de equivalencia y no-inferioridad.
- Métodos para demostrar equivalencia.
- Métodos para demostrar no-inferioridad.
- Limitaciones de los contraste de equivalencia y no enfermedad.
- Apéndice 4.
- La prueba de Kolmogorov-Smirnov para dos muestras independientes.
- La prueba de las rachas de Wald-Wolfowitz.
- La prueba de reacciones extremas de Moses.
- La prueba de Mann-Whitney con SPSS.
- La prueba de Kruskal Wallis con SPSS.
- El caso de dos grupos.
- El caso de más de los grupos.
- Medidas del tamaño del efecto con SPSS.
- Doble contraste unilateral de Schurmann.
- Intervalo de confianza de Westlake.
UNIDAD DIDÁCTICA 17. INFERENCIA CON DOS VARIABLES CUANTITATIVAS.
- La prueba T de Student para muestras relacionadas.
- La prueba de Wilcoxon para dos muestras.
- La prueba de los signos para dos muestras.
- El coeficiente de correlación de Pearson.
- El coeficiente de correlación de Spearman.
- Medidas del tamaño de Spearman con SPSS.
- Medidas de la potencia y del tamaño muestral.
- Apéndice 17.
- Correlaciones parciales.
- La prueba de Wilcoxon para dos muestras de SPSS.
- La prueba de los signos para dos muestras con SPSS.
UNIDAD DIDÁCTICA 18. ANÁLISIS DE VARIANZA (I). UN FACTOR COMPLETAMENTE ALEATORIO.
- La lógica del análisis de varianza.
- ANOVA de un factor completamente aleatorio (A-CA).
- Transformación de las puntuaciones.
- Comparaciones múltiples entre medidas.
- Comparaciones planeadas o a priori.
- Comparaciones de post hoc o a posteriores.
- Comparaciones múltiples: que procedimiento elegir ANOVA de un factor con SPSS.
- Apéndice 18.
- Distribución muestral de estadístico F.
- Estadístico F robustos: Welch y Brown-Forsythe.
- Comparaciones post hoc: procedimientos alternativos.
- Efectos aleatorios.
- Modelos de análisis de varianza.
- Números de factores.
- Tipo de asignación de las unidades de análisis a las condiciones del estudio.
- Forma de establecer los niveles del factor.
- Clasificación de los modelos de análisis de varianza.
- Supuestos del ANOVA de un factor.
- Independencia.
- Normalidad.
- Igualdad de varianzas (homocedasticidad).
- Efectos fijos y aleatorios.
- Medidas del tamaño del efecto.
- Calculo de la potencia y del tamaño muestral.
- Comparaciones múltiples entre medidas.
- Tasa de error en las comparaciones múltiples.
- Prueba de Dunn-Bonferroni.
- Comparaciones de tendencias.
- Prueba de Dunnett.
- Prueba de Tukey.
- Prueba de Scheffe.
- Supuestos.
- Hipótesis de igualdad de medidas.
- Tamaña del efecto y potencia observada.
- Comparaciones post hoc.
- Comparaciones planeadas y de tendencias.
- Tabla de la Distribución F.
- La distribución F con SPSS.
- Métodos secuenciales.
UNIDAD DIDÁCTICA 19. ANÁLISIS DE VARIANZA (II). DOS FACTORES COMPLETAMENTE ALEATORIZADOS.
- Estructura de los datos y notación.
- La interacción entre factores.
- ANOVA de dos factores completamente aleatorizados (AB-CA).
- Comparaciones múltiples.
- ANOVA de dos factores completamente aleatorizados con SPSS.
- Apéndice 19.
- Casillas con tamaños muéstrales distintos.
- Mas sobre los efectos simple y el efecto de la interacción.
- La sentencia LMATRIX.
- Modelos jerárquicos o anidados.
- Supuestos del ANOVA de dos factores.
- Efectos fijos y aleatorios.
- Medidas del tamaño del efecto.
- Calculo de la potencia y del tamaño muestral.
- Efectos principales.
- Efectos simples.
- Efecto de la interacción.
- Hipostasis globales (efecto de A de B y de AB).
- Tamaño del efecto y potencia observada.
- Comparaciones post hoc: efectos principales.
- Comparaciones múltiples: efectos simples.
- Comparaciones múltiples: efecto de la interacción.
UNIDAD DIDÁCTICA 20. ANÁLISIS DE VARIANZA (III). UN FACTOR CON MEDIDAS REPETIDAS.
- Características de los diseños con medidas repetidas.
- ANOVA de un factor con medidas repetidas (A-MR).
- Supuestos del modelo.
- Alternativas al estadístico F.
- Medidas del tamaño del efecto.
- Calculo de la potencia y del tamaño muestral.
- Comparaciones múltiples.
- ANOVA de un factor con medidas repetidas (A-MR) con SPSS.
- La prueba de Friedman.
- Apéndice 20.
- Prueba de no-aditividad de Turkey.
- Estadístico F con los grados de libertad modificados.
- Aproximación multivariada.
- Que solución elegir.
- Esfericidad.
- Igualdad de medias.
- Tamaño del efecto y potencia observada.
- Comparaciones planeadas.
- Comparaciones post hoc.
- Como estimar épsilon.
- Prueba de Cochran.
- Coeficiente de concordancia W de Kendall.
UNIDAD DIDÁCTICA 21. ANÁLISIS DE VARIANZA (IV). DOS FACTORES CON MEDIDAS REPETIDAS.
- ANOVA de dos factores con medidas repetidas en ambos (AB-MR)
- Supuestos del modelo.
- Medidas del tamaño del efecto.
- Calculo de la potencia y del tamaño muestral.
- Comparaciones múltiples.
- ANOVA de dos factores con medidas repetidas en ambos (AB-MR) con SPSS.
- ANOVA de dos factores con medidas repetidas en uno (AB-CA-MR)
- ANOVA de dos factores con medidas repetidas en uno (AB-CA-MR) con SPSS.
- Apéndice 21.
- La sentencia MMATRIX.
- Esfericidad.
- Hipótesis globales (efecto de A de B y de AB).
- Tamaño del efecto y potencia observada.
- Comparaciones post hoc: efectos principales.
- Comparaciones múltiples: efectos simples.
- Comparaciones múltiples: efectos de la interacción.
- Supuestos del modelo.
- Medidas del tamaño del efecto.
- Calculo de la potencia y del tamaño muestral.
- Comparaciones múltiples.
- Esferidad muti-muestra e igualdad de varianzas.
- Hipótesis globales (efectos de A de B y de AB).
- Comparaciones post hoc: efectos principales.
- Comparaciones múltiples: efectos simples.
- Comparaciones múltiples: efectos de la interacción.
- Análisis de los efectos simples.
- Comparaciones entre los niveles de un mismo efecto simple.
- Análisis del efecto de la interacción.
UNIDAD DIDÁCTICA 22. ANÁLISIS DE REGRESIÓN LINEAL.
- Regresión lineal simple.
- Diagrama de dispersión.
- La recta de regresión.
- Bondad de ajuste.
- Significación de los coeficientes de regresión.
- Como efectuar pronósticos.
- Regresión lineal múltiple.
- La ecuación de regresión.
- Bondad de ajuste.
- Significación de los coeficientes de regresión.
- Importancia relativa de las variables.
- Variables independientes categóricas.
- Regresión jerárquica o por pasos.
- Supuestos del modelo de regresión lineal.
- Linealidad.
- No colinealidad.
- Normalidad.
- Homocedasticidad.
- Casos atípicos e influentes.
- Casos influyentes.
- Qué hacer con los casos atípicos e influyentes.
- Regresión lineal con SPSS.
- Regresión múltiple.
- Regresión jerárquica o por pasos.
- Comentarios finales.
- Consideraciones sobre el tamaño muestral.
- Apéndice 22.
- Regresión curvilínea.
- Mínimos cuadrados.
- Coeficientes de regresión.
- Coeficientes de regresión tipificados.
- Intervalos de confianza.
- Coeficientes de regresión.
- Coeficientes de regresión tificados.
- Criterios para seleccionar variables.
- Métodos para seleccionar variables.
- Casos atípicos en Y.
- Casos atípicos en X.
- Cambio en los coeficientes de regresión.
- Cambio en los pronósticos.
- Cambio en los residuos.
- Bondad de ajuste.
- Educación de regresión.
- Significación de los coeficientes de regresión.
- Pronósticos.
- Importancia relativa de regresión.
- Chequeo de los supuestos.
- Casos atípicos e influyentes.
- Regresión jerárquica o por pasos con variables categóricas.
- Validez de una ecuación de regreso.
UNIDAD DIDÁCTICA 23. MODELOS LINEALES.
- Que es un modelo lineal.
- Componentes de un modelo lineal.
- Clasificación de los modelos lineales.
- Como ajustar un modelo lineal.
- Seleccionar el modelo.
- Estimar los parámetros y obtener los pronósticos.
- Valorar la calidad o ajuste del modelo.
- Chequear los supuestos del modelo.
- Casos atípicos e influyentes.
- Apéndice 23.
- Distribuciones de la familia exponencial.
- Máxima verosimilitud.
- El componente aleatorio.
- El componente sistemático.
- La función de enlace.
- Ajuste global.
- Contribución de cada variable.
UNIDAD DIDÁCTICA 24. MODELOS LINEALES CLÁSICOS.
- Análisis de varianza.
- Análisis de covarianza.
- Lógica del análisis de covarianza.
- Seleccionar el modelo.
- Estimar los parámetros y obtener los pronósticos.
- Valorar de covarianza con SPSS.
- Análisis de regresión lineal.
- Seleccionar el modelo.
- Estimar los parámetros y obtener los pronósticos.
- Valorar la calidad o ajuste del modelo.
- Chequear los supuestos.
- Interacción entra variables independientes.
- Apéndice 24.
- Elementos de un modelo lineal clásico.
- Seleccionar el modelo.
- Estimar los parámetros y obtener los pronósticos.
- Valorar la calidad o ajuste del modelo.
- Chequear los supuestos.
- Como chequear los supuestos.
- Como valorar el efecto del factor.
- Pendientes de regresión heterogénea.
- Dos variables cuantitativas.
- Unas variables dicotómicas y una cuantitativa.
UNIDAD DIDÁCTICA 25. MODELOS LINEALES MIXTOS.
- Efectos fijos, aleatorios y mixtos.
- Que es un modelo lineal mixto.
- Modelos con grupo aleatorios.
- Análisis de varianza: un factor de efectos aleatorios.
- Análisis de varianza: dos factores de efectos mixtos.
- Modelos con medidas repetidas.
- Estructura de los datos.
- Análisis de varianza: un factor con medidas repetidas.
- Análisis de varianza: dos factores con medidas repetidas en ambos.
- Análisis de varianza: dos factores con medidas repetidas en uno.
- Análisis de covarianza: dos factores con medidas repetidas en uno.
- Estructura de la matriz de varianzas-covarianzas residual.
- Apéndice 25.
- Elementos de un modelo lineal mixto.
- Métodos de estimación en los modelos lineales mixtos.
- Información preliminar.
- Ajuste global.
- Significación de los efectos incluidos en el modelo.
- Estimaciones de los parámetros.
- Información preliminar.
- Ajuste global.
- Significación de los efectos incluidos en el modelo.
- Estimaciones de los parámetros.
- Comparaciones múltiples.
- Significación de los efectos incluidos en el modelo.
- Estimaciones de los parámetros.
- Comparaciones múltiples.
- Significación de los efectos incluidos en el modelo.
- Estimaciones de los parámetros.
- Significación de los afectos incluidos en el modelo.
- Estimación de los parámetros.
- Comparaciones múltiples.
- Análisis de los efectos simples.
- Análisis de los efectos de la interacción.
- Análisis del efecto de la interacción.
UNIDAD DIDÁCTICA 26. MODELOS LINEALES MULTINIVEL.
- Que es un modelo multinivel.
- Análisis de varianza: un factor de efectos aleatorios.
- Análisis de regresión: medias como resultados.
- Análisis de covarianza: un factor de efectos aleatorios.
- Análisis de regresión: medias pendientes como resultados.
- Curvas de crecimiento.
- Apéndice 26.
- El tamaño muestral en los modelos multinivel.
- Medidas repetidas: coeficientes aleatorios.
- Medidas repetidas: medidas y pendientes como resultados.
UNIDAD DIDÁCTICA 27. REGRESIÓN LOGÍSTICA (I). RESPUESTAS DICOTÓMICAS.
- Regresión con respuestas dicotómicas.
- Regresión logística binaria o dicotómica.
- Una covariables (regresión simple).
- Significación de los coeficientes de regresión.
- Interpretación de los coeficientes de regresión.
- Más de una covariables (regresión múltiple).
- Pronósticos y clasificación.
- Covariables categóricas.
- Interacción entre covariables.
- Regresión logística jerárquica o por pasos.
- Supuestos del modelo de regresión logística.
- Linealidad.
- No colinealidad.
- Independencia.
- Dispersión proporcional a la media.
- Casos atípicos e influyentes.
- Casos atípicos.
- Casos influyentes.
- Apéndice 27.
- Regresión probit.
- Función lineal.
- La función logística.
- La transformación logit.
- Información preliminar.
- Ajuste global: significación estadística.
- Ajuste global: significación sustantiva.
- Pronósticos y clasificación.
- Ajuste global.
- Significación de los coeficientes de regresión.
- Interpretación de los coeficientes de regresión.
- Dos covariables dicotómica.
- Una covariables dicotómica y una cuantitativa.
- Dos covariables cuantitativas.
UNIDAD DIDÁCTICA 28. REGRESIÓN LOGÍSTICA (II). RESPUESTAS NOMINALES Y ORDINALES.
- Regresión nominal.
- El modelo de regresión nominal.
- Una variable independiente (regresión simple).
- Más de una variable independiente (regresión múltiple).
- Interacción entre variables independientes.
- Regresión por pasos.
- Sobre dispersión.
- Regresión ordinal.
- El modelo de regresión ordinal.
- Una variable independiente (regresión simple).
- Más de una variable independiente (regresión múltiple).
- Interacción entre variables independientes.
- Odds proporcionales.
- Apéndice 28.
- Funciones de enlace en los modelos de regresión ordinal.
- Ajuste global.
- Significación e interpretación de los coeficientes de regresión.
- Ajuste global.
- Significación e interpretación de los coeficientes de regresión.
- Pronósticos y clasificación.
- Ajuste global.
- Significación e interpretación de los coeficientes de regresión.
UNIDAD DIDÁCTICA 29 REGRESIÓN DE POISSON.
- Regresión lineal con recuentos.
- Regresión de Poisson con recuentos.
- El modelo de regresión de Poisson.
- Una variable independiente (regresión simple).
- Una variable independiente dicotómica.
- Una variable independiente polifónica.
- Más de una variable (regresión múltiple).
- Interacción entre variables independientes.
- Regresión de Poisson con tasas de respuesta.
- Sobredispersion.
- Apéndice 29.
- Ajuste global: significado estadística.
- Ajuste global: significado de sustantiva.
- Significación de los coeficientes de regresión.
- Interpretación de los coeficientes de regresión.
- Ajuste global.
- Significación de los coeficientes de regresión.
- Interpretación de los coeficientes de regresión.
- Dos variables dicotómicas y una cuantitativa.
- Criterios de información.
- La distribución binominal negativa y el problema de la sobredispersión.
UNIDAD DIDÁCTICA 30. ANÁLISIS LOGLINEAL.
- Tablas de contingencias.
- Modelos loglineales jerárquicos.
- Como formular modelos loglineales.
- Como estimar las frecuencias esperadas de un modelo loglineal.
- Como evaluar la calidad o ajuste de un modelo loglineal.
- Como seleccionar el mejor modelo loglineal.
- Como analizar los residuos.
- Como analizar modelos loglineales jerárquicos con SPSS.
- Modelos loglineal generales.
- Como ajustar un modelo concreto.
- Estimaciones de los parámetros.
- Estructura de las casillas.
- Tablas incompletas.
- Tablas cuadradas.
- Tasas de respuesta.
- Comparaciones entre niveles.
- Modelos logit.
- Una variable independiente.
- Más de una variable independiente.
- Correspondencia entre los modelos logit y los loglineales.
- El procedimiento Logit.
- Apéndice 30.
- Esquemas de muestreo.
- Estadísticos mínimo-suficientes.
- Grados de libertad en un modelo loglineal.
- notación en tablas de contingencias.
- Asociación en tablas de contingencias.
- El modelo de independencia.
- El modelo de dependencia.
- Parámetros independientes.
- Tablas multidimensionales.
- El principio de jerarquía.
- Ajuste por pasos.
- Ceros muéstrales.
- Ceros estructurales.
- Cuasi-independencia.
- Simetría completa.
- Simetría relativa.
- Ajuste global: significación estadística.
- Ajuste global: significación sustantiva.
- Interpretación de los coeficientes de un modelo logit.
UNIDAD DIDÁCTICA 31. ANÁLISIS DE SUPERVIVENCIA.
- Tiempos de espera, eventos, casos censurados.
- Tablas de mortalidad.
- El método de Kaplan-Meier.
- El método de Kaplan-Meier con SPSS.
- Gráficos de los tiempos de espera.
- Como comprar tiempos de espera.
- Regresión de Cox.
- La actuación de regresión.
- Regresión de Cox con SPSS.
- Variables independientes categóricas.
- Regresión de Cox por pasos.
- Diagnósticos del modelo de regresión de Cox.
- Casos atípicos e influyentes.
- Covariables dependientes del tiempo.
- Apéndice 31.
- Intervalos de confianza para las funciones de probabilidad.
- El estadístico de Wilcoxon-Gehan.
- EDITORIAL ACADÉMICA Y TÉCNICA: Índice de libro Análisis de datos en ciencias sociales y de la salud I, II, III. Pardo, Antonio. Ruiz, Miguel Ángel. San Martín, Rafael. Publicado por Editorial Síntesis
- Disposición de los datos.
- Tablas de mortalidad con SPSS.
- Como comprar tiempos de espera.
- El estadístico producto-limite.
- Impacto proporcional.
- Residuos de Cox-Snell.
- Residuos parciales.
- Diferencia en las betas.
- Como crear covariables dependientes del tiempo.
- Regresión con covariables dependientes del tiempo.
- Regresión con covariables cuyos valores cambian con el tiempo.