Cursos gratuitos

Curso Gratuito Master Oficial Universitario en Big Data + 60 Créditos ECTS

Duración: 1500
EURO616ef0526e735
Valoración: 4.8 /5 basada en 72 revisores
cursos gratuitos

Para qué te prepara este curso subvencionado Curso Gratuito Master Oficial Universitario en Big Data + 60 Créditos ECTS:

Con este Máster de Big Data podrás analizar grandes volúmenes de datos y poder aplicarlos a cualquier sector para poder adecuar el desarrollo empresarial de cualquier organización, haciendo posible la adaptación y mejora al mercado y su consecuente. También podrás explotar todo el volumen de datos a través de programación en R y en Python. Aprenderás a aplicar todos los conocimientos en Big Data para el Cloud Computing con Linux y Azure. Su superación dará derecho a la obtención del correspondiente Título Oficial de Máster, el cual puede habilitar para la realización de la Tesis Doctoral y obtención del título de Doctor/a.

A quién va dirigido:

El Máster de Big Data puede aplicarse a muchos sectores y perfiles, por lo que es ideal para aquellas personas que quieran conocer en qué consiste el Big Data, como pueden aplicarlo en distintos ámbitos con el objetivo de mejorar su carrera profesional y con qué herramientas se puede llevar a cabo dichos análisis de procesamiento de grandes volúmenes de datos.

Objetivos de este curso subvencionado Curso Gratuito Master Oficial Universitario en Big Data + 60 Créditos ECTS:

Los principales objetivos de este Máster Oficial Universitario en Big Data son: - Aprender los principios del Big Data y el desarrollo de las fases de un proyecto de Big Data. - Conocer las herramientas existentes y su uso para analizar y explotar datos masivos. - Explotar datos y visualizar resultados a través de técnica de Data Science. - Comprender y utilizar la programación estadística con R y Python. - Conocer en qué consiste el Data Mining y aplicarlo correctamente. - Saber utilizar las analíticas web para Big Data y aplicarlas mediante Google Analytics - Aplicar los conocimientos de Big Data para el Cloud Computing con Linux y Azure

Salidas Laborales:

Gracias a este Máster Oficial Universitario de Big Data el alumno podrá trabajar en diversos puestos dentro del sector, como: - Consultor/auditor de sistemas Big Data - Analista de datos - Arquitecto en soluciones Big Data - Experto en estrategias de desarrollo mediante Big Data - Programador de aplicaciones en Python y R - Investigación en Big Data.

 

Resumen:

Actualmente, en muchos ámbitos multisectoriales, la creciente cantidad de datos y el auge del Internet de las cosas (IoT) presentan la necesidad de analizar y procesar toda esta información para la mejora y adecuación de las estrategias de negocio de las empresas. Además, todas las empresas buscan la reducción de sus costes y mediante la aplicación de las técnicas adecuadas de Big Data este objetivo puede cumplirse. A través del Big Data las organizaciones pueden convertir grandes cantidades de datos en información relevante para crear nuevos productos, customizar servicios según las preferencias del cliente, conocer los hábitos de los consumidores, optimizar procesos internos o solucionar problemas, por ejemplo. Con este Máster podrás conocer y comprender todos los detalles y objetivos de un proyecto de Big Data y te otorgará la posibilidad de trabajar en proyectos donde se busca la mejor solución sin dejar de lado la escalabilidad de los datos y la seguridad de éstos. Podrás extraer la información de una forma óptima y podrás tomar decisiones estratégicas dentro de las empresas. Se trata de una materia y un área de profesionalización en auge, en la que la rapidez y la actualización de la formación son un factor de diferenciación entre los trabajadores de una empresa.

Titulación:

Título Oficial de Master en Big Data expedida por la Universidad e-Campus acreditado con 60 ECTS Universitarios. Su superación dará derecho a la obtención del correspondiente Título Oficial de Máster, el cual puede habilitar para la realización de la Tesis Doctoral y obtención del título de Doctor/a.

Metodología:

Los estudiantes pueden seguir las clases en línea desde su propio ordenador o desde la aplicación móvil en cualquier momento, tienen a disposición un tutor personal en línea y las únicas actividades que deben realizar de forma presencial - en las sedes académicas - son los exámenes y la discusión de la tesis. Para cada una de las asignaturas se realizará un examen presencial en español, pudiendo realizarse en la sedes de Madrid o Bogotá o en cualquiera de las sedes de la Cámara de Comercio con la que la Universidad tiene un convenio para la realización de las evaluaciones presenciales.

Temario:


MÓDULO 1. BIG DATA INTRODUCTION

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
UNIDAD DIDÁCTICA 8.DEL BIG DATA AL LINKED OPEN DATA
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras

MÓDULO 2. ARQUITECTURA BIG DATA

UNIDAD DIDÁCTICA 1. BATCH PROCESSING
  1. Hadoop
  2. Pig
  3. Hive
  4. Sqoop
  5. Flume
  6. Spark Core
  7. Spark 2.0
UNIDAD DIDÁCTICA 2. STREAMING PROCESSING
  1. Fundamentos de Streaming Processing
  2. Spark Streaming
  3. Kafka
  4. Pulsar y Apache Apex
  5. Implementación de un sistema real-time
UNIDAD DIDÁCTICA 3. SISTEMAS NOSQL
  1. Hbase
  2. Cassandra
  3. MongoDB
  4. NeoJ
  5. Redis
  6. Berkeley DB
UNIDAD DIDÁCTICA 4. INTERACTIVE QUERY
  1. Lucene + Solr
UNIDAD DIDÁCTICA 5. SISTEMAS DE COMPUTACIÓN HÍBRIDOS
  1. Arquitectura Lambda
  2. Arquitectura Kappa
  3. Apache Flink e implementaciones prácticas
  4. Druid
  5. ElasticSearch
  6. Logstash
  7. Kibana
UNIDAD DIDÁCTICA 6. CLOUD COMPUTING
  1. Amazon Web Services
  2. Google Cloud Platform
UNIDAD DIDÁCTICA 7. ADMINISTRACIÓN DE SISTEMAS BIG
  1. Administración e Instalación de clusters: Cloudera y Hortonworks
  2. Optimización y monitorización de servicios
  3. Seguridad: Apache Knox, Ranger y Sentry
UNIDAD DIDÁCTICA 8. VISUALIZACIÓN DE DATOS
  1. Herramientas de visualización: Tableau y CartoDB
  2. Librerías de Visualización: D, Leaflet, Cytoscape

MÓDULO 3. TECNOLOGÍAS APLICADAS A BUSINESS INTELLIGENCE

UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
UNIDAD DIDÁCTICA 2. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
UNIDAD DIDÁCTICA 3. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
UNIDAD DIDÁCTICA 5. HERRAMIENTA POWERBI
  1. 1. Business Intelligence en Excel
  2. Herramienta Powerbi
UNIDAD DIDÁCTICA 6. HERRAMIENTA TABLEAU
  1. Herramienta Tableau
UNIDAD DIDÁCTICA 7. HERRAMIENTA QLIKVIEW
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos

MÓDULO 4. HERRAMIENTAS PARA EXPLOTACIÓN Y ANÁLISIS DE BIG DATA

UNIDAD DIDÁCTICA 1. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 2.INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL. MONGODB
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 3. PROCESAMIENTO DISTRIBUIDO DE DATOS CON HADOOP
  1. ¿Qué es Hadoop?
  2. El sistema de archivos HDFS
  3. Algunos comandos de referencia
  4. Procesamiento MapReduce con Hadoop
  5. El concepto de los clusters en Hadoop
UNIDAD DIDÁCTICA 4. WEKA Y DATA MINING
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
UNIDAD DIDÁCTICA 5. PENTAHO UNA SOLUCIÓN OPEN SOURCE PARA BUSINESS INTELLIGENCE
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho

MÓDULO 5. INTRODUCCIÓN A LA PROGRAMACIÓN ESTADÍSTICA

UNIDAD DIDÁCTICA 1. PYTHON Y EL ANÁLISIS DE DATOS
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
UNIDAD DIDÁCTICA 2. R COMO HERRAMIENTA PARA BIG DATA
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop

MÓDULO 6. DATA SCIENCE

UNIDAD DIDÁCTICA 1.INTRODUCCIÓN A LA CIENCIA DE DATOS
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2.BASES DE DATOS RELACIONALES
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
UNIDAD DIDÁCTICA 3. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
UNIDAD DIDÁCTICA 4. ANÁLISIS DE LOS DATOS
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados

MÓDULO 7. INTELIGENCIA ARTIFICIAL (IA), MACHINE LEARNING (ML) Y DEEP LEARNING (DL)

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
  1. Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
  1. Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
  1. Introducción
  2. Algoritmos
UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 10. CLASIFICACIÓN
  1. Clasificadores
  2. Algoritmos
UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING
  1. Componentes
  2. Aprendizaje
UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
UNIDAD DIDÁCTICA 16. REDES MULTICAPA
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa

MÓDULO 8. CIBERSEGURIDAD APLICADA A INTELIGENCIA ARTIFICIAL (IA), SMARTPHONES, INTERNET DE LAS COSAS (IOT) E INDUSTRIA 4.0

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y CONCEPTOS BÁSICOS
  1. La sociedad de la información
  2. Diseño, desarrollo e implantación
  3. Factores de éxito en la seguridad de la información
UNIDAD DIDÁCTICA 2. COMUNICACIONES SEGURAS: SEGURIDAD POR NIVELES
  1. Seguridad a Nivel Físico
  2. Seguridad a Nivel de Enlace
  3. Seguridad a Nivel de Red
  4. Seguridad a Nivel de Transporte
  5. Seguridad a Nivel de Aplicación
UNIDAD DIDÁCTICA 3. CIBERSEGURIDAD EN NUEVAS TECNOLOGÍAS
  1. Concepto de seguridad TIC
  2. Tipos de seguridad TIC
  3. Aplicaciones seguras en Cloud
  4. Plataformas de administración de la movilidad empresarial (EMM)
  5. Redes WiFi seguras
  6. Caso de uso: Seguridad TIC en un sistema de gestión documental
UNIDAD DIDÁCTICA 4. CIBERSEGURIDAD EN SMARTPHONES
  1. Buenas prácticas de seguridad móvil
  2. Protección de ataques en entornos de red móv
UNIDAD DIDÁCTICA 5. INTELIGENCIA ARTIFICIAL (IA) Y CIBERSEGURIDAD
  1. Inteligencia Artificial
  2. Tipos de inteligencia artificial
  3. Impacto de la Inteligencia Artificial en la ciberseguridad
UNIDAD DIDÁCTICA 6. CIBERSEGURIDAD E INTERNET DE LAS COSAS (IOT)
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  8. Vulnerabilidades de IoT
  9. Necesidades de seguridad específicas de IoT
UNIDAD DIDÁCTICA 7. SEGURIDAD INFORMÁTICA EN LA INDUSTRIA 4.0
  1. Industria 4.0
  2. Necesidades en ciberseguridad en la Industria 4.0

MÓDULO 9. PROYECTO FIN DE MÁSTER

Accede ahora a nuestros cursos y encuentra la más amplia variedad de cursos del mercado, este

curso gratuito le prepara para ser Gracias a este Máster Oficial Universitario de Big Data el alumno podrá trabajar en diversos puestos dentro del sector, como: - Consultor/auditor de sistemas Big Data - Analista de datos - Arquitecto en soluciones Big Data - Experto en estrategias de desarrollo mediante Big Data - Programador de aplicaciones en Python y R - Investigación en Big Data.

. ¿A qué esperas para llevar a cabo tus proyectos personales?.

No se han encontrado comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *