Curso Gratuito Master en Machine Learning, Inteligencia Artificial y Big Data

Información gratuita

Nombre y apellidos

Email

Teléfono

Situación laboral

País

Provincia

Acepto la Política de Privacidad, el Aviso Legal y la Política de Cookies de cursosgratuitos.es

Curso 100% Bonificable si eres trabajador contratado en el régimen general y envías la documentación de matrícula (en el caso de ser estudiante, desempleado, autónomo, funcionario o jubilado puedes realizar este curso de forma parcialmente subvencionada)

Para qué te prepara:

El Master en Machine Learning, Inteligencia Artificial y Big Data te proporcionará los conocimientos necesarios para especializarte en campos como el machine learning, la inteligencia artificial o el deep learning, clave en la profunda revolución tecnológica actual. Aprenderás a llevar a cabo la extracción de estructuras de datos y su aplicación en el aprendizaje automático. También crearás y desarrollarás chatbots gracias al procesamiento de lenguaje natural además de conocer todo el ámbito del internet de las cosas (IoT) en la industria 4.0 y su aplicación gracias a la visión artificial.

A quién va dirigido:

El Master en Machine Learning, Inteligencia Artificial y Big Data está orientado a profesionales que deseen actualizarse y adaptarse a campos en pleno auge tecnológico como el machine learning, la inteligencia artificial y el deep learning. Además, también está pensado para aquellos estudiantes que busquen una formación especializada que les ayude a adentrase en el mercado laboral a través de sus prácticas garantizadas.

Titulación:

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”

Objetivos:

- Manejar, programar y parametrizar herramientas avanzadas de machine learning para la creación de software inteligente. - Crear y administrar sistemas expertos. - Crear y desarrollar chatbots gracias al procesamiento del lenguaje natural (PLN). - Desarrollar un sistema de Deep Learning. - Descubrir la visión artificial, el iot y su aplicación para la industria 4.0.

Salidas Laborales:

Gracias a la realización del Master en Machine Learning, Inteligencia Artificial y Big Data optarás a puestos tan importantes dentro de cualquier empresa actual como Machine Learning Engineer, Machine Learning Developer, Data Scientist, Experto en Visión artificial, AI Developer, Research Scientist on Deep Learning o Artificial Intelligence specialist.

Resumen:

Estamos en una etapa de cambio tecnológico. Dia a día crece la cantidad de información que generamos y cada vez se ven más avances en la automatización de tareas y en la creación de modelos artificiales inteligentes dentro de empresas, páginas web, aplicaciones, etc. Saber cómo interpretar todos estos grandes volúmenes de información y aplicarlo en campos como la inteligencia artificial, el machine learning y el deep learning se vuelve clave para llevar a cabo una actualización tecnológica dentro de cualquier empresa. El Master en Machine Learning, Inteligencia Artificial y Big Data te proporcionará los conocimientos necesarios para llevar a cabo la extracción de estructuras de datos y su aplicación en el aprendizaje automático. También crearás y desarrollarás chatbots gracias al procesamiento de lenguaje natural además de conocer todo el ámbito del internet de las cosas (IoT) en la industria 4.0 y su aplicación gracias a la visión artificial. Además, en este máster impartido por INESEM Business School, contarás con un equipo de profesionales especializados en la materia que te ayudarán en todo momento y gracias a las prácticas garantizadas en empresas punteras dentro del sector podrás acceder a un mercado laboral con gran auge y futuro.

Metodología:

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes. La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.

Temario:

MÓDULO 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
  1. Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
  1. Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro

MÓDULO 2. MACHINE LEARNING Y DEEP LEARNING

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
  1. Introducción
  2. Algoritmos
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
  1. Clasificadores
  2. Algoritmos
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
  1. Componentes
  2. Aprendizaje
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
UNIDAD DIDÁCTICA 7. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 8. SISTEMAS NEURONALES
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 9. REDES DE UNA SOLA CAPA
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
UNIDAD DIDÁCTICA 10. REDES MULTICAPA
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 11. ESTRATEGIAS DE APRENDIZAJE
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa

MÓDULO 3. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. PLN en Python con la librería NLTK
  5. Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés

MÓDULO 4. CHATBOTS E INTELIGENCIA ARTIFICIAL

UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
  1. Introducción a la Inteligencia artificial
  2. El Test de Turing
  3. Agentes Inteligentes
  4. Aplicaciones de la inteligencia artificial
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel

MÓDULO 5. VISIÓN ARTIFICIAL Y SU APLICACIÓN EN LA INDUSTRIA 4.0

UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
  1. Visión artificial y su aplicación en la industria 4.0
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)

MÓDULO 6. PROGRAMACIÓN DE VISIÓN ARTIFICIAL CON PYTHON Y OPENCV

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
UNIDAD DIDÁCTICA 2. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
UNIDAD DIDÁCTICA 3. TRATAMIENTO DE IMÁGENES
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
UNIDAD DIDÁCTICA 4. HISTOGRAMAS Y TEMPLATE MATCHING
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 5. COLORES Y ESPACIOS DE COLOR
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 6. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
UNIDAD DIDÁCTICA 7. APRENDIZAJE AUTOMÁTICO
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

MÓDULO 7. IOT (INTERNET DE LAS COSAS) Y SISTEMAS CIBERFÍSICOS EN LA INDUSTRIA 4.0

UNIDAD DIDÁCTICA 1. INTERNET DE LAS COSAS
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 2. SISTEMAS CIBERFÍSICOS
  1. Contexto Sistemas Ciberfísicos (CPS)
  2. Características CPS
  3. Componentes CPS
  4. Ejemplos de uso
  5. Retos y líneas de trabajo futuras

MÓDULO 8. PROYECTO FIN DE MÁSTER