Para qué te prepara:
<p>El <strong>Master en Deep Learning y Big Data</strong> otorga las herramientas necesarias para <strong>extraer información </strong>de valor que ayude a la <strong>actualización tecnológica</strong> de cualquier empresa. Serás capaz de gestionar grandes volúmenes de información y, gracias a la inteligencia artificial y el deep learning, crearás <strong>sistemas inteligentes</strong> de gestión de información. Además aprenderás a securizar toda la información gestionada mediante estas tecnologías.</p>
A quién va dirigido:
<p>Esta formación especializada en Deep Learning y Big Data está pensada para <strong>profesionales</strong> que deseen aprender a <strong>utilizar la inteligencia artificial</strong> y el deep learning en la actualización tecnológica de cualquier sistema de gestión de información. También se orienta a <strong>estudiantes </strong>que busquen incorporarse a uno de los sectores profesionales más demandados por las empresas.<strong> </strong></p>
Titulación:
Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Objetivos:
<ul><li>Utilizar las <strong>principales herramientas de Big Data</strong>.</li><li><strong>Construir sistemas inteligentes</strong> de gestión de información.</li><li>Programar <strong>soluciones de machine learning</strong> y <strong>deep learning</strong></li><li>Creación de <strong>redes neuronales</strong> de una capa y multicapa.</li><li>Crear <strong>chatbots inteligentes</strong> gracias al uso del <strong>PLN.</strong></li><li>Mantener la <strong>ciberseguridad</strong> de la información gestionada por todas estas tecnologías.</li></ul>
Salidas Laborales:
<p>Estamos ante uno de los sectores profesionales con más demanda de empleo en la actualidad. Gracias a la realización de este Master en Deep Learning y Big Data podrás optar a <strong>puestos tan demandados y bien remunerados</strong> como <strong>Big Data Scientist</strong>, Responsable de inteligencia artificial, <strong>AI Developer</strong>, Research Scientist on <strong>Deep Learning</strong>, Data E<strong>ngineer</strong> o líder de <strong>proyectos big data</strong>.</p>
Resumen:
Estamos en una etapa de cambio tecnológico. Dia a día crece la cantidad de información que generamos y cada vez se ven más avances en la automatización de tareas y en la creación de modelos artificiales inteligentes dentro de empresas, páginas web, aplicaciones, etc. Todo esto hace que la importancia de saber analizar estos grandes volúmenes de datos, conocidos como Big Data, se convierta en trascendental para tomar cualquier decisión importante dentro de una empresa, ámbito social o cualquier otro campo profesional. Saber cómo interpretar todos estos grandes volúmenes de información y aplicarlo en campos como la inteligencia artificial, el machine learning y el deep learning se vuelve clave para llevar a cabo una actualización tecnológica dentro de cualquier empresa. Gracias a la realización de este Máster en Deep Learning y Big Data podrás obtener los conocimientos necesarios para el análisis de datos masivos y su aplicación en el ámbito de la inteligencia artificial (IA) gracias al aprendizaje profundo (Deep Learning). Además, descubrirás un mundo lleno de oportunidades laborales y en pleno auge debido a la cada vez mayor importancia del procesamiento de lenguaje natural (PLN) y el desarrollo de chatbots. Además, en este máster impartido por INESEM Business School, contarás con un equipo de profesionales especializados en la materia que te ayudarán en todo momento y gracias a las prácticas garantizadas en empresas punteras dentro del sector podrás acceder a un mercado laboral con gran auge y futuro.
Metodología:
Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes. La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.
Temario:
MÓDULO 1. BIG DATA INTRODUCTION
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
UNIDAD DIDÁCTICA 3. OPEN DATA
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING
UNIDAD DIDÁCTICA 8. DEL BIG DATA AL LINKED OPEN DATA
UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS
MÓDULO 2. ARQUITECTURA BIG DATA
UNIDAD DIDÁCTICA 1. BATCH PROCESSING
UNIDAD DIDÁCTICA 2. STREAMING PROCESSING
UNIDAD DIDÁCTICA 3. SISTEMAS NOSQL
UNIDAD DIDÁCTICA 4. INTERACTIVE QUERY
UNIDAD DIDÁCTICA 5. SISTEMAS DE COMPUTACIÓN HÍBRIDOS
UNIDAD DIDÁCTICA 6. CLOUD COMPUTING
UNIDAD DIDÁCTICA 7. ADMINISTRACIÓN DE SISTEMAS BIG
UNIDAD DIDÁCTICA 8. VISUALIZACIÓN DE DATOS
MÓDULO 3. TECNOLOGÍAS APLICADAS A BUSINESS INTELLIGENCE
UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
UNIDAD DIDÁCTICA 2. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
UNIDAD DIDÁCTICA 3. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
UNIDAD DIDÁCTICA 5. HERRAMIENTA POWERBI
UNIDAD DIDÁCTICA 6. HERRAMIENTA TABLEAU
UNIDAD DIDÁCTICA 7. HERRAMIENTA QLIKVIEW
MÓDULO 4. HERRAMIENTAS PARA EXPLOTACIÓN Y ANÁLISIS DE BIG DATA
UNIDAD DIDÁCTICA 1. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
UNIDAD DIDÁCTICA 3. ECOSISTEMA HADOOP
UNIDAD DIDÁCTICA 4. WEKA Y DATA MINING
UNIDAD DIDÁCTICA 5. PENTAHO UNA SOLUCIÓN OPEN SOURCE PARA BUSINESS INTELLIGENCE
MÓDULO 5. INTELIGENCIA ARTIFICIAL (IA), MACHINE LEARNING (ML) Y DEEP LEARNING (DL)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING
UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN
UNIDAD DIDÁCTICA 10. CLASIFICACIÓN
UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING
UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN
UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES
UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA
UNIDAD DIDÁCTICA 16. REDES MULTICAPA
UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE
MÓDULO 6. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
MÓDULO 7. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
MÓDULO 8. CIBERSEGURIDAD APLICADA A INTELIGENCIA ARTIFICIAL (IA), SMARTPHONES, INTERNET DE LAS COSAS (IOT) E INDUSTRIA 4.0
UNIDAD DIDÁCTICA 1. CIBERSEGURIDAD EN NUEVAS TECNOLOGÍAS
UNIDAD DIDÁCTICA 2. CIBERSEGURIDAD EN SMARTPHONES
UNIDAD DIDÁCTICA 3. INTELIGENCIA ARTIFICIAL (IA) Y CIBERSEGURIDAD
UNIDAD DIDÁCTICA 4. CIBERSEGURIDAD E INTERNET DE LAS COSAS (IOT)
UNIDAD DIDÁCTICA 5. SEGURIDAD INFORMÁTICA EN LA INDUSTRIA 4.0
MÓDULO 9. PROYECTO FIN E MÁSTER