Para qué te prepara:
A lo largo del Master en Computación Cuántica e Inteligencia Artificial, se conseguirá dominar herramientas de una u otra área como Matlab, TensorFlow, Python, o Chatterbot, entre otros. De esta forma, ser podrá sacar el máximo provecho de las posibilidades que esta nueva forma de hacer informática aporta a diferentes áreas de aplicación y elevar a las empresas hacia otro nivel de la mano de la inteligencia artificial.
A quién va dirigido:
El Master en Computación Cuántica e Inteligencia Artificial se dirige principalmente a aquellas personas formadas en estadística, matemáticas, informática o telecomunicaciones. No obstante, las innumerables aplicaciones de la inteligencia artificial lo hacen apto también para otros perfiles como la economía o la administración de empresas, entre otros.
Titulación:
TITULACIÓN expedida por EUROINNOVA INTERNATIONAL ONLINE EDUCATION, miembro de la AEEN (Asociación Española de Escuelas de Negocios) y CLADEA (Consejo Latinoamericano de Escuelas de Administración)
Objetivos:
- Aprender a crear algoritmos más eficientes haciendo uso de la computación cuántica y de sistemas de cómputo numérico como Matlab. - Estudiar las diferentes aplicaciones de la física cuántica en el ámbito de la tecnología, la medicina, el transporte, la energía o la electricidad. - Conocer el nexo de unión entre el Big Data y la inteligencia artificial para desarrollar algoritmos para las máquinas. - Manejar TensorFlow para generar aprendizaje automático y el lenguaje de programación Python para desarrollar aplicaciones. - Desarrollar chatbots con ChatterBot y Python o con Chatfuel para Facebook Messenger.
Salidas Laborales:
Finalizado el Master en computación cuántica e inteligencia artificial, habilitará para ocupar puestos como desarrollador o investigador de algoritmos para finanzas, para aplicarlos a la inteligencia artificial, química, la optimización, la inteligencia artificial aplicada a la industria, el análisis de datos, el marketing o la investigación evidenciándose así, el carácter polivalente del master.
Resumen:
Con este Master de Computación Cuántica e Inteligencia Artificial aprenderás que la computación cuántica ha irrumpido en el ámbito corporativo, tecnológico y científico como una rama de la informática que supone una evolución respecto a la informática tradicional. Mediante esta teoría se podrán desarrollar superordenadores con una mayor capacidad de almacenaje y con más posibilidades de crear algoritmos más eficientes. La computación cuántica unida a la inteligencia artificial supone superar los límites de la informática como se había conocido hasta ahora. No es extraño, por lo tanto, que se requiera en la actualidad y aún más en el futuro, contar con profesionales especializados en el master en computación cuántica e inteligencia artificial, para obtener el mayor rendimiento.
Metodología:
Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. Además recibirá los materiales didácticos que incluye el curso para poder consultarlos en cualquier momento y conservarlos una vez finalizado el mismo.La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.
Temario:
MÓDULO 1. CALCULO NUMÉRICO PARA COMPUTACIÓN EN CIENCIA E INGENIERÍA
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LOS COMPUTADORES
UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A LA PROGRAMACIÓN Y HERRAMIENTAS DE CÁLCULO NUMÉRICO
UNIDAD DIDÁCTICA 3. EL SISTEMA MATLAB
UNIDAD DIDÁCTICA 4. ARITMÉTICA DEL COMPUTADOR
UNIDAD DIDÁCTICA 5. ECUACIONES ALGEBRAICAS DE UNA VARIABLE
UNIDAD DIDÁCTICA 6. SISTEMAS DE ECUACIONES ALGEBRAICAS
UNIDAD DIDÁCTICA 7. INTERPOLACIÓN Y APROXIMACIÓN
UNIDAD DIDÁCTICA 8. DIFERENCIACIÓN E INTEGRACIÓN
MÓDULO 2. FÍSICA CUÁNTICA
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA FÍSICA CUÁNTICA
UNIDAD DIDÁCTICA 2. ÁTOMOS, ELECTRONES Y FOTONES
UNIDAD DIDÁCTICA 3. EFECTO ELECTROMAGNÉTICO
UNIDAD DIDÁCTICA 4. NÚMEROS CUÁNTICOS Y ORBITALES
UNIDAD DIDÁCTICA 5. NÚCLEOS
UNIDAD DIDÁCTICA 6. EL CAMPO DE PUNTO CERO
UNIDAD DIDÁCTICA 7. APLICACIONES DE LA FÍSICA CUÁNTICA
MÓDULO 3. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
MÓDULO 4. MACHINE LEARNING Y DEEP LEARNING
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
UNIDAD DIDÁCTICA 7. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
UNIDAD DIDÁCTICA 8. SISTEMAS NEURONALES
UNIDAD DIDÁCTICA 9. REDES DE UNA SOLA CAPA
UNIDAD DIDÁCTICA 10. REDES MULTICAPA
UNIDAD DIDÁCTICA 11. ESTRATEGIAS DE APRENDIZAJE
MÓDULO 5. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
MÓDULO 6. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
MÓDULO 7. MACHINE LEARNING CON ARDUINO Y TENSORFLOW 2.0
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y PRIMEROS PASOS
UNIDAD DIDÁCTICA 2. PREPARACIÓN DE ARDUINO Y CONFIGURACIÓN DE ENTORNO PYTHON
UNIDAD DIDÁCTICA 3. CODIFICACIÓN Y CONTROL DE ARDUINO CON PYTHON
UNIDAD DIDÁCTICA 4. MANEJO DE ENTRADAS ANALÓGICAS CON PYTHON
UNIDAD DIDÁCTICA 5. USO DE SALIDAS ANALÓGICAS
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A MACHINE LEARNING
UNIDAD DIDÁCTICA 7. REDES NEURONALES, SERIES TEMPORALES Y PROBLEMAS DE REGRESIÓN
UNIDAD DIDÁCTICA 8. OBTENCIÓN DE PARÁMETROS EN ARDUINO Y GENERACIÓN DE CONJUNTOS DE DATOS
UNIDAD DIDÁCTICA 9. PROCESAMIENTO DE DATOS Y ETAPA DE ENTRENAMIENTO
UNIDAD DIDÁCTICA 10. CREACIÓN DE RED NEURONAL ARTIFICIAL Y APLICACIONES CON ARDUINO Y TENSORFLOW CON KERAS
MÓDULO 8. VISIÓN ARTIFICIAL EN INDUSTRIA 4.0 CON PYTHON Y OPENCV
UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
UNIDAD DIDÁCTICA 5. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
UNIDAD DIDÁCTICA 6. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
UNIDAD DIDÁCTICA 7. TRATAMIENTO DE IMÁGENES
UNIDAD DIDÁCTICA 8. HISTOGRAMAS Y TEMPLATE MATCHING
UNIDAD DIDÁCTICA 9. COLORES Y ESPACIOS DE COLOR
UNIDAD DIDÁCTICA 10. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
UNIDAD DIDÁCTICA 11. APRENDIZAJE AUTOMÁTICO
MÓDULO 9. COMPUTACIÓN CUÁNTICA
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA
UNIDAD DIDÁCTICA 2. TECNOLOGÍA CUÁNTICA ACTUAL
UNIDAD DIDÁCTICA 3. ALGORITMO CUÁNTICOS
UNIDAD DIDÁCTICA 4. COMUNICACIONES CUÁNTICAS
UNIDAD DIDÁCTICA 5. CRIPTOGRAFÍA CUÁNTICA
UNIDAD DIDÁCTICA 6. SIMULACIÓN CUÁNTICA
UNIDAD DIDÁCTICA 7. COMPUTACIÓN CUÁNTICA ADIABÁTICA
UNIDAD DIDÁCTICA 8. ALGORITMOS DE PASEO CUÁNTICO
UNIDAD DIDÁCTICA 9. ERRORES CUÁNTICOS Y CÓDIGOS CUÁNTICOS