Curso Gratuito Magister en Matemática

Información gratuita

Nombre y apellidos

Email

Teléfono

Situación laboral

País

Provincia

Acepto la Política de Privacidad, el Aviso Legal y la Política de Cookies de cursosgratuitos.es

Curso 100% Bonificable si eres trabajador contratado en el régimen general y envías la documentación de matrícula (en el caso de ser estudiante, desempleado, autónomo, funcionario o jubilado puedes realizar este curso de forma parcialmente subvencionada)

Para qué te prepara:

Con este Magister en Matemática podrás adquirir una formación avanzada, multidisciplinar y con carácter avanzado orientada a la aplicación en cualquier área matemática y estadística. Te preparará no solo en el ámbito de la docencia sino también supondrá adquirir competencias que se pueden llevar a la investigación o a la conclusión de una tesis doctoral en la materia. Estarás preparado para aplicar los conocimientos adquiridos en nuevos entornos.

A quién va dirigido:

El Magister en Matemática se dirige principalmente a titulados con intereses en el área de las matemáticas. Se orienta fundamentalmente a graduados en Matemáticas, Informática, Ingenieros en Electrónica, Telecomunicaciones, Industriales etc. y otras carrearas afines. Deberán tener capacidad de abstracción, razonamiento lógico y familiaridad con los cálculos matemáticos.

Titulación:

Doble Titulación Expedida por EUROINNOVA BUSINESS SCHOOL como Escuela de Negocios Acreditada para la Impartición de Formación Superior de Postgrado y Avalada por la Escuela Superior de Cualificaciones Profesionales

Objetivos:

- El objetivo general es conseguir un nivel avanzado de formación en matemática aplicada, estadística y financiera. - Estimular la investigación en matemática aplicable. - Realizar investigaciones en pro de las matemáticas puras mediante diversos proyectos. - Conocer las fases del proceso estadístico - Aprender la teoría de la probabilidad - Profundizar en los conocimientos del cálculo financiero necesarios para aplicar a tareas empresariales.

Salidas Laborales:

El estudio de las matemáticas ha dejado de ser minoritario para convertirse, gracias a internet y las herramientas digitales que han surgido, en una carrera con altas perspectivas laborales. La formación adquirida con el Magister en Matemática te abrirá las puertas en el ámbito financiero o como desarrollador de software, Analista de datos o analista financiero.

Resumen:

La matemática se considera una ciencia que requiere de un estudio bien desarrollado para poder abarcar todas sus áreas. El Magister en Matemática se ha diseñado con la idea de partir de las matemáticas básicas para comprender nociones avanzadas en materia de estadística y concluir con la aplicación en el mundo empresarial con las matemáticas financieras. Pretendemos dar una formación avanzada en el conocimiento y desarrollo de técnicas matemáticas, estadísticas y financieras que permitan una visión global de esta ciencia exacta. Su desarrollo con lenguaje sencillo y la gran cantidad de casos prácticos ayudará a una comprensión total de una materia que puede parecer compleja en un principio.

Metodología:

Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.

Temario:

MÓDULO 1. MATEMÁTICAS PURAS INICIALES

UNIDAD DIDÁCTICA 1. PRINCIPIOS Y CONVENIOS FUNDAMENTALES
  1. Objetivo de razonamiento den las matemáticas y principios lógicos en que se funda
  2. Cifras de aritmética y sistemas de numeración
UNIDAD DIDÁCTICA 2. CALCULOS DE SUMAR, RESTAR, MULTIPLICAR Y DIVIDIR CON UNIDADES ENTERSA Y PARTES DECIMALES EN ARITMÉTICA
  1. Sumar con números enteros
  2. Restar con números enteros
  3. Multiplicar con enteros
  4. Dividir con enteros
  5. Descomponer un número entero en todos sus factores simples y compuestos
  6. Complemento del sistema de numeración con el departes decimales de la unidad simple
  7. Sumación, resta, multiplicación y división con enteros y decimales
UNIDAD DIDÁCTICA 3. CÁLCULOS DE SUMAR, RESTAR, MULTIPLICAR Y DIVIDIR CON CANTIDADES LITERALES ENTERAS
  1. Sumar y restar con enteros literales
  2. Multiplicar con enteros literales
  3. Dividir con enteros literales
  4. Algunas propiedades de los números
UNIDAD DIDÁCTCA 4. CÁLCULO DE CANTIDADES FRACCIONARIAS EN ARITMÉTICA
  1. Expresión y transformación de los números fraccionarios
  2. Sumación, resta, multiplicación y división con fracciones
  3. Números denominados y tablas en ellos.
UNIDAD DIDÁCTICA 5. CÁLCULO DE CANTIDADES FRACCIONARIAS LITERALES
  1. Expresión y transformación de los quebrados literales
  2. Sumas, restas, multiplicación y fracción con fracciones literales
  3. Fracciones continuas

MÓDULO 2. MATEMÁTICAS PURAS AVANZADAS

UNIDAD DIDÁCTICA 1. POTENCIAS Y RAÍCES ARTIMÉTICAS
  1. Ideas generales acerca de las potencias y raíces de los números
  2. Potencia segunda de los números polidígitos
  3. Potencias y raíces terceras de los polinomios
UNIDAD DIDÁCTICA 2. POTENCIAS Y RAÍCES LITERALES
  1. Principios generales de potencias y raíces
  2. Potencias y raíces segundas de los polinomios
  3. Potencias y raíces terceras de los polinomios
UNIDAD DIDÁCTICA 3. TEORÍA DE LAS ECUACIONES DE PRIMERO Y SEGUNDO GRADO
  1. Ideas generales sobre las ecuaciones y los problemas
  2. Ecuación determinada de primer grado
  3. Eliminación de incógnitas entre las ecuaciones indeterminadas de primer grado
  4. Ecuación indeterminada de primer grado
  5. Ecuación determinada de segundo grado
  6. Ecuación de segundo grado con dos incógnitas
UNIDAD DIDÁCTICA 4. RAZÓN, PROPORCIONES, PROGRESIONES Y LOGARTIMOS
  1. Razón, proporción y progresión por diferencia
  2. Razón, proporción y progresión por cociente
  3. Problemas pertenecientes a las proporciones y progresiones geométricas
  4. Logaritmos
  5. Formación de tablas logarítmicas vulgares y modos de usarlas.

MÓDULO 3. MATEMÁTICA APLICADA

UNIDAD DIDÁCTICA 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES
  1. Matrices. Calculo matricial
  2. Sistemas de ecuaciones lineales. Teorema de Rouché-Frobenius. Método de Gauss
  3. Resolución numérica de sistemas de ecuaciones lineales
UNIDAD DIDÁCTICA 2. ESPACIO VECTORIAL Y ESPACIO VECTORIAL EUCLÍDEO
  1. Espacio vectorial. Combinación lineal. Dependencia e independencia lineales
  2. Producto escalar. Espacio vectorial euclídeo
UNIDAD DIDÁCTICA 3. APLICACIONES LINEALES E ISOMETRÍAS LINEALES
  1. Definición de aplicación lineal. Núcleo e imagen
  2. Representación matricial de una aplicación lineal. Efecto de un cambio de base
  3. Isometrías lineales en R2 y R3
UNIDAD DIDÁCTICA 4. DIAGONALIZACIÓN
  1. Valores y vectores propios. Matrices diagonalizables por semejanza
  2. Diagonalización por semejanza ortogonal de matrices simétricas
  3. Aplicaciones
UNIDAD DIDÁCTICA 5. ESPACIO AFÍN Y ESPACIO AFÍN EUCLÍDEO. ISOMETRÍAS AFINES
  1. Definición de espacio afín. Sistema de referencia. Cambio de sistema de referencia. Variedades afines
  2. Definición de espacio afín euclídeo. Distancia y proyección ortogonal
  3. Isometrías afines. Clasificación de las isometrías afines en el plano y en el espacio afines euclídeos
UNIDAD DIDÁCTICA 6. CÓNICAS Y CUÁDRICAS
  1. Introducción a la Geometría Diferencial. Curvas y superficies implícitas. Curvas y superficies parametrizadas
  2. Definición de cónica. Ecuaciones de las cónicas. Clasificación. Cálculo de la forma reducida
  3. Definición de cuádrica. Ecuaciones de las cuádricas. Clasificación. Cálculo de la forma reducida
UNIDAD DIDÁCTICA 7. ECUACIONES DIFERENCIALES
  1. Modelos matemáticos con ecuaciones diferenciales. Primeras definiciones y ejemplos
  2. Ecuaciones diferenciales ordinarias de primer orden
  3. Ecuaciones diferenciales ordinarias lineales de orden superior
  4. Sistemas de ecuaciones diferenciales lineales de primer orden con coeficientes constantes
  5. Introducción a las ecuaciones en derivadas parciales. Ecuaciones de segundo orden

MÓDULO 4. ESTADISTICA APLICADA. ANALISIS DE DATOS Y SPSS

UNIDAD DIDÁCTICA 1. CONCEPTOS BÁSICOS Y ORGANIZACIÓN DE DATOS
  1. Aspectos introductorios a la Estadística
  2. Concepto y funciones de la Estadística
  3. Medición y escalas de medida
  4. Variables: clasificación y notación
  5. Distribución de frecuencias
  6. Representaciones gráficas
  7. Propiedades de la distribución de frecuencias
UNIDAD DIDÁCTICA 2. ESTADÍSTICA DESCRIPTIVA BÁSICA
  1. Estadística descriptiva
  2. Estadística inferencial
UNIDAD DIDÁCTICA 3. MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN
  1. Medidas de tendencia central
  2. La media
  3. La mediana
  4. La moda
  5. Medidas de posición
  6. Medidas de variabilidad
  7. Índice de Asimetría de Pearson
  8. Puntuaciones típicas
UNIDAD DIDÁCTICA 4. ANÁLISIS CONJUNTO DE VARIABLES
  1. Introducción al análisis conjunto de variables
  2. Asociación entre dos variables cualitativas
  3. Correlación entre dos variables cuantitativas
  4. Regresión lineal
UNIDAD DIDÁCTICA 5. DISTRIBUCIONES DE PROBABILIDAD
  1. Conceptos previos de probabilidad
  2. Variables discretas de probabilidad
  3. Distribuciones discretas de probabilidad
  4. Distribución Normal
  5. Distribuciones asociadas a la distribución Normal
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A LA ESTADÍSTICA EN PROGRAMAS INFORMÁTICOS. EL SPSS
  1. Introducción
  2. Cómo crear un archivo
  3. Definir variables
  4. Variables y datos
  5. Tipos de variables
  6. Recodificar variables
  7. Calcular una nueva variable
  8. Ordenar casos
  9. Seleccionar casos
UNIDAD DIDÁCTICA 7. ESTADÍSTICA DESCRIPTIVA CON SPSS
  1. Introducción
  2. Análisis de frecuencias
  3. Tabla de correlaciones
  4. Diagramas de dispersión
  5. Covarianza
  6. Coeficiente de correlación
  7. Matriz de correlaciones
  8. Contraste de medias

MÓDULO 5. INFERENCIA ESTADISTICA FINANCIERA

UNIDAD DIDÁCTICA 1. MODELOS PROBABILÍSTICOS UNIVARIANTES CONTINUOS
  1. Distribuciones continuas básicas
  2. Distribución normal
  3. Aplicaciones de los modelos geométricos
  4. Distribuciones relacionadas con las integrales eulerianas
  5. Distribuciones relacionadas con la distribución normal
  6. Convergencias en distribución
UNIDAD DIDÁCTICA 2. DISTRIBUCIONES ASOCIADAS A LOS ESTADÍSTICOS MUESTRALES DE UNA POBLACIÓN NORMAL
  1. Distribución para la media de una muestra normal
  2. Distribución para la varianza y cuasivarianza de una muestra normal
  3. Distribuciones de probabilidad para la diferencia de medias de dos muestras independientes normales
  4. Distribución para el cociente de varianzas
  5. Distribución para la proporción muestral
UNIDAD DIDÁCTICA 3. ESTIMACIÓN PUNTUAL DE PARÁMETROS
  1. Método de máxima verosimilitud
  2. Método de los momentos
  3. Relación entre el método de máxima verosimilitud y el de los momentos
  4. Propiedades deseables para un estimador paramétrico
UNIDAD DIDÁCTICA 4. ESTIMACIÓN MEDIANTE INTERVALOS DE CONFIANZA
  1. Intervalos de confianza para la media de una distribución normal
  2. Intervalo de confianza para una proporción
  3. Intervalo de confianza para la diferencia de medias de dos poblaciones normales
  4. Intervalo de confianza para la diferencia de proporciones
  5. Intervalo de confianza para la varianza de una población normal
  6. Intervalo de confianza para la razón de varianzas
  7. Construcción de regiones de confianza
UNIDAD DIDÁCTICA 5. CONTRASTE DE HIPÓTESIS
  1. Formulación de un contraste de hipótesis
  2. Contraste de hipótesis para la media de una población normal
  3. Contraste para la diferencia de medias
  4. Contraste para la diferencia de proporciones
  5. Contraste para la varianza
  6. Contraste para la razón de varianzas
  7. Análisis de razón de verosimilitudes
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A LA ECONOMETRÍA
  1. Introducción a los modelos econométricos
  2. Especificación y estimación del modelo lineal simple
  3. Estimación de la varianza de la perturbación aleatoria
UNIDAD DIDÁCTICA 7. EL MODELO LINEAL SIMPLE NORMAL
  1. Conceptualización
  2. Obtención de los estimadores mínimo-cuadráticos
  3. Propiedades descriptivas en la regresión lineal simple
  4. Medidas de la bondad del ajuste. El coeficiente de determinación
  5. Hipótesis estadísticas del modelo
  6. Propiedades probabilísticas del modelo
  7. Análisis de la varianza en la regresión
  8. Ejercicio tipo del MLS

MÓDULO 6. MATEMATICAS FINANCIERAS

UNIDAD DIDÁCTICA 1. OPERACIONES FINANCIERAS A INTERÉS SIMPLE
  1. Operaciones financieras
  2. Equivalencia entre capitales financieros
  3. Definición de interés y descuento financiero
  4. Operación financiera de capitalización simple
  5. Operación financiera de descuento simple
  6. Relación entre descuento e interés
  7. Transformación del dominio de valoración
  8. Equivalencia de capitales
UNIDAD DIDÁCTICA 2. CAPITALIZACIÓN Y ACTUALIZACIÓN A INTERÉS COMPUESTO
  1. Operación financiera de capitalización compuesta
  2. Operación financiera de descuento compuesto
  3. Relación entre descuento e interés
  4. Transformación del dominio de valoración
  5. Equivalencia de capitales
UNIDAD DIDÁCTICA 3. LIQUIDACIÓN DE CUENTAS CORRIENTES
  1. Introducción a la liquidación de cuentas corrientes
  2. La cuenta corriente a la vista
  3. Descubierto en cuenta corriente
  4. Intereses y comisiones
  5. Año civil y año comercial
  6. Formulación del interés simple
  7. Liquidación de la cuenta corriente
  8. Método directo
  9. Método indirecto
  10. Método Hamburgués
UNIDAD DIDÁCTICA 4. LIQUIDACIÓN DE LAS CUENTAS DE CRÉDITO
  1. Introducción a la liquidación de las cuentas de crédito
  2. Liquidación de las cuentas de crédito
UNIDAD DIDÁCTICA 5. RENTAS A INTERÉS COMPUESTO
  1. Concepto y clases de rentas
  2. Valor actual de una renta
  3. Valor final de una renta
  4. Rentas diferidas
  5. Rentas perpetuas
UNIDAD DIDÁCTICA 6. LIQUIDACION DE PRÉSTAMOS
  1. Introducción a la liquidación de préstamos
  2. Prestamos amortizables con reintegro único
  3. Préstamo amortizable con reintegro único y pago periódico de intereses
  4. Préstamo amortizable mediante cuotas constantes. Sistema francés
UNIDAD DIDÁCTICA 7. DESCUENTO COMERCIAL. LIQUIDACION
  1. El descuento bancario
  2. El descuento financiero
  3. El descuento comercial
  4. Negociación de efectos. Liquidación
  5. Remesa de efectos
  6. Gestión de cobro de efectos
  7. Devolución de efectos impagados