Para qué te prepara este curso subvencionado Curso Gratuito Maestría en Investigación en Inteligencia Artificial + Estancia Internacional:
La finalidad principal de esta maestría en innovación en IA es preparar a todos los profesionales del sector tecnológico para el presente y futuro más próximo. Con esta formación te prepararemos para liderar proyectos cuyo factor principal es la inteligencia artificial, para implementar la tecnología deep learning en softwares ya creados y para desarrollar tecnologías interactivas que permitan conocer mejor a los usuarios. Esto son solo algunas de las áreas de la inteligencia artificial en las que podrás avanzar, pero, ¡Aún hay muchas más!
A quién va dirigido:
Todos los profesionales del sector tecnológico deben mantenerse actualizados, dado el trepidante ritmo evolutivo que se da en este campo. La inteligencia artificial es una de las tecnologías estrella del Siglo XXI y de las que más posibilidades ofrecen a todos los ámbitos de la sociedad. Si tienes experiencia en programación y desarrollo, eres ingeniero informático o te apasiona todo lo relacionado con el deep learning, es tu momento para seguir creciendo.
Objetivos de este curso subvencionado Curso Gratuito Maestría en Investigación en Inteligencia Artificial + Estancia Internacional:
- Te conformarás una visión global los avances en inteligencia artificial y de sus propósitos a corto plazo. - Estudiarás los diferentes tipos de IA y sabrás cuál encaja mejor con los objetivos de cada proyecto. - Verás las ventajas de relacionar IA y el big data. - Profundizarás en los sistemas expertos, en su estructura, en el rendimiento, y en cómo se crean. - Trabajar los diferentes tipos de algoritmos de aprendizaje automático. - Entenderás cómo funcionan y se crean los sistemas de recomendación, selección y aprendizaje. - Aprenderás todo sobre deep learning con Python, Keras y Tensorflow. - Programarás chatbots. - Investigarás en los fundamentos de la computación de la sintaxis para el PLN.
Salidas Laborales:
Muchos de los puestos mejor remunerados y valorados del sector tecnológico son los que están relacionados con la inteligencia artificial y el deep learning, por la novedad e innovación que representan. Realizando la Maestría en Investigación en IA podrás ser: analista de datos, trabajar como especialista en machine learning, desarrollar estrategias de Marketing automation y otras muchas especialidades que necesitan de la inteligencia artificial.
Resumen:
La inteligencia artificial ha abierto un campo de posibilidades infinitas para todo tipo de empresas, y no solo eso, también para organizaciones sociales y el sector educativo. Todos podemos ser partícipes de las ventajas del desarrollo tecnológico y tú, como profesional, puedes liderarlo realizando una formación especializada como la Maestría en Investigación en IA de ESIBE. Con ella, obtendrás una visión global de los fundamentos sobres los que se asienta la inteligencia artificial y profundizarás en los conocimientos técnicos necesarios para desarrollar todo tipo de proyectos. Sistemas administrativos, integración del deep learning, desarrollo de aplicaciones interactivas… entre otras muchas posibilidades.
Titulación:
Titulación de Maestría en Investigación en Inteligencia Artificial con 1500 horas expedida por ESIBE (ESCUELA IBEROAMERICANA DE POSTGRADO).
Metodología:
Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.
Temario:
MÓDULO 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
- Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
- Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
MÓDULO 2. MACHINE LEARNING Y DEEP LEARNING
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
UNIDAD DIDÁCTICA 7. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 8. SISTEMAS NEURONALES
- Redes neuronales
- Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 9. REDES DE UNA SOLA CAPA
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
UNIDAD DIDÁCTICA 10. REDES MULTICAPA
- Tipos de redes profundas
- Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 11. ESTRATEGIAS DE APRENDIZAJE
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
MÓDULO 3. PLN, CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
UNIDAD DIDÁCTICA 2. PLN EN PYTHON
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
UNIDAD DIDÁCTICA 6. ¿QUÉ ES UN CHATBOT?
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
UNIDAD DIDÁCTICA 7. RELACIÓN ENTRE IA Y CHATBOTS
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 8. ÁMBITOS DE APLICACIÓN CHATBOTS
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel
MÓDULO 4. MACHINE LEARNING CON ARDUINO Y TENSORFLOW 2.0
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y PRIMEROS PASOS
- ¿Qué es la inteligencia artificial?
- Hardware y software unidos por la Inteligencia Artificial
- Inteligencia Artificial y Visión Artificial
- Arduino: introducción
UNIDAD DIDÁCTICA 2. PREPARACIÓN DE ARDUINO Y CONFIGURACIÓN DE ENTORNO PYTHON
- Instalación de Arduino
- Configurando tu Arduino para Python
UNIDAD DIDÁCTICA 3. CODIFICACIÓN Y CONTROL DE ARDUINO CON PYTHON
- Control de Arduino
UNIDAD DIDÁCTICA 4. MANEJO DE ENTRADAS ANALÓGICAS CON PYTHON
- Manejo de entradas
- Entradas analógicas
UNIDAD DIDÁCTICA 5. USO DE SALIDAS ANALÓGICAS
- Salidas analógicas
- Valores analógicos en Arduino
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A MACHINE LEARNING
- Introducción al machine learning
- Aprendizaje supervisado
- Aprendizaje no supervisado
UNIDAD DIDÁCTICA 7. REDES NEURONALES, SERIES TEMPORALES Y PROBLEMAS DE REGRESIÓN
- Redes neuronales y deep learning
- Series Temporales
UNIDAD DIDÁCTICA 8. OBTENCIÓN DE PARÁMETROS EN ARDUINO Y GENERACIÓN DE CONJUNTOS DE DATOS
- Funciones y parámetros
- Variables y constantes especializadas
- Estructura de control
UNIDAD DIDÁCTICA 9. PROCESAMIENTO DE DATOS Y ETAPA DE ENTRENAMIENTO
- Introducción
- ¿Qué son los datos de entrenamiento de IA?
- ¿Por qué se requieren datos de entrenamiento de IA?
- ¿Cuántos datos son adecuados?
- ¿Qué afecta la calidad de los datos en el entrenamiento?
UNIDAD DIDÁCTICA 10. CREACIÓN DE RED NEURONAL ARTIFICIAL Y APLICACIONES CON ARDUINO Y TENSORFLOW CON KERAS
- Crear red neural paso a paso
- Redes neuronales: Aprendizaje
- Otras redes neuronales
MÓDULO 5. VISIÓN ARTIFICIAL EN INDUSTRIA 4.0 CON PYTHON Y OPENCV
UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
- La visión artificial: definiciones y aspectos principales
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
- Ópticas
- Iluminación
- Cámaras
- Sistemas 3D
- Sensores
- Equipos compactos
- Metodologías para la selección del hardware
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
- Algoritmos
- Software
- Segmentación e interpretación de imágenes
- Metodologías para la selección del software
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
- Aplicaciones clásicas: discriminación, detección de fallos…
- Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
UNIDAD DIDÁCTICA 5. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
UNIDAD DIDÁCTICA 6. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
UNIDAD DIDÁCTICA 7. TRATAMIENTO DE IMÁGENES
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
UNIDAD DIDÁCTICA 8. HISTOGRAMAS Y TEMPLATE MATCHING
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 9. COLORES Y ESPACIOS DE COLOR
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 10. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
UNIDAD DIDÁCTICA 11. APRENDIZAJE AUTOMÁTICO
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)
MÓDULO 6. CIBERSEGURIDAD APLICADA A INTELIGENCIA ARTIFICIAL (IA), SMARTPHONES, INTERNET DE LAS COSAS (IOT) E INDUSTRIA 4.0
UNIDAD DIDÁCTICA 1. CIBERSEGURIDAD EN NUEVAS TECNOLOGÍAS
- Concepto de seguridad TIC
- Tipos de seguridad TIC
- Aplicaciones seguras en Cloud
- Plataformas de administración de la movilidad empresarial (EMM)
- Redes WiFi seguras
- Caso de uso: Seguridad TIC en un sistema de gestión documental
UNIDAD DIDÁCTICA 2. CIBERSEGURIDAD EN SMARTPHONES
- Buenas prácticas de seguridad móvil
- Protección de ataques en entornos de red móvil
UNIDAD DIDÁCTICA 3. INTELIGENCIA ARTIFICIAL (IA) Y CIBERSEGURIDAD
- Inteligencia Artificial
- Tipos de inteligencia artificial
- Impacto de la Inteligencia Artificial en la ciberseguridad
UNIDAD DIDÁCTICA 4. CIBERSEGURIDAD E INTERNET DE LAS COSAS (IOT)
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
- Vulnerabilidades de IoT
- Necesidades de seguridad específicas de IoT
UNIDAD DIDÁCTICA 5. SEGURIDAD INFORMÁTICA EN LA INDUSTRIA 4.0
- Industria 4.0
- Necesidades en ciberseguridad en la Industria 4.0
- Ciberseguridad en Sistemas de Control Industrial (IC)
- Amenazas y riesgos en los entornos IC
curso gratuito le prepara para ser
Muchos de los puestos mejor remunerados y valorados del sector tecnológico son los que están relacionados con la inteligencia artificial y el deep learning, por la novedad e innovación que representan. Realizando la Maestría en Investigación en IA podrás ser: analista de datos, trabajar como especialista en machine learning, desarrollar estrategias de Marketing automation y otras muchas especialidades que necesitan de la inteligencia artificial.
. ¿A qué esperas para llevar a cabo tus proyectos personales?.