Para qué te prepara:
Gracias a esta Maestría en Data Driven Decision Making desarrollarás estrategias de análisis de datos con fuentes de información masivas utilizando herramientas Big Data como Hadoop o Weka para una posterior visualización de datos en informes profesionales con herramientas como Tableau o PowerBI. También podrás analizar datos estadísticos con Python y R y aplicar modelos de inteligencia artificial para la creación de Chatbots inteligentes.
A quién va dirigido:
Esta Maestría en Data Driven Decision Making está orientada principalmente a profesionales con un perfil técnico, a estudiantes en informática o incluso a empresarios con ciertos conocimientos que quieran aprender cómo, a través de modelos programados para analizar información masiva es posible crear visualizaciones de datos que permitan tomar decisiones estratégicas.
Titulación:
Titulación de Maestría en Data Driven Decision Making con 1500 horas expedida por ESIBE (ESCUELA IBEROAMERICANA DE POSTGRADO).
Objetivos:
- Entender las posibilidades del Big Data y cuáles son las herramientas más utilizadas para el análisis de datos. - Conocer la arquitectura Big Data, sus principales tecnologías y sistemas de administración de información. - Saber cómo utilizar la información para el Business Intelligence y como crear Datamart y Datawarehouse. - Utilizar herramientas profesionales de visualización de datos como Tableau, PowerBI, Qlikview, Carto o Google Data. - Descubrir qué es Data Science y procesar modelos de datos con los lenguajes de programación estadística Python y R. - Emplear la Inteligencia artificial, el Machine learning y el Deep Learning para tomar decisiones estratégicas. - Crear chatbots inteligentes utilizando procesamiento de lenguaje natural e inteligencia artificial.
Salidas Laborales:
Todas las empresas quieren lograr el éxito en su nicho de mercado y, actualmente, para lograrlo es necesario establecer una estrategia profesional de toma de decisiones basada en datos. Gracias a este Master en Data Driven Decision Making optarás a puestos como CIO (Chief Information Officer), Big Data Developer, Analista de datos, Data Scientist o IA Engineer.
Resumen:
La toma de decisiones dentro de una empresa en base a un análisis de datos estratégico y focalizado es clave para diferenciarte del resto de competidores y conseguir el éxito. Gracias a esta Maestría en Data Driven Decision Making desarrollarás estrategias de análisis de datos con fuentes de información masivas utilizando herramientas Big Data como Hadoop o Weka para una posterior visualización de datos en informes profesionales con herramientas como Tableau o PowerBI. También podrás analizar datos estadísticos con Python y R y aplicar modelos de inteligencia artificial para la creación de Chatbots inteligentes. Contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión.
Metodología:
Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.
Temario:
MÓDULO 1. BIG DATA ANALYTICS TOOLS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
- ¿Qué es Big Data?
- La era de las grandes cantidades de información. Historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open Data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
- Diagnóstico inicial
- Diseño del proyecto
- Proceso de implementación
- Monitorización y control del proyecto
- Responsable y recursos disponibles
- Calendarización
- Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. BIG DATA Y MARKETING
- Apoyo del Big Data en el proceso de toma de decisiones
- Toma de decisiones operativas
- Marketing estratégico y Big Data
- Nuevas tendencias en management
UNIDAD DIDÁCTICA 6. DEL BIG DATA AL LINKED OPEN DATA
- Concepto de web semántica
- Linked Data Vs Big Data
- Lenguaje de consulta SPARQL
UNIDAD DIDÁCTICA 7. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL. Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL. MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB. Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
- Actualización de datos en MongoDB. Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 9. ECOSISTEMA HADOOP
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
UNIDAD DIDÁCTICA 10. WEKA Y DATA MINING
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
UNIDAD DIDÁCTICA 11. PENTAHO
- Una aproximación a Pentaho
- Soluciones que ofrece Pentaho
- MongoDB & Pentaho
- Hadoop & Pentaho
- Weka & Pentaho
MÓDULO 2. ARQUITECTURA BIG DATA
UNIDAD DIDÁCTICA 1. BATCH PROCESSING
- Hadoop
- Pig
- Hive
- Sqoop
- Flume
- Spark Core
- Spark 2.0
UNIDAD DIDÁCTICA 2. STREAMING PROCESSING
- Fundamentos de Streaming Processing
- Spark Streaming
- Kafka
- Pulsar y Apache Apex
- Implementación de un sistema real-time
UNIDAD DIDÁCTICA 3. SISTEMAS NOSQL
- Hbase
- Cassandra
- MongoDB
- NeoJ
- Redis
- Berkeley DB
UNIDAD DIDÁCTICA 4. INTERACTIVE QUERY
- Lucene + Solr
UNIDAD DIDÁCTICA 5. SISTEMAS DE COMPUTACIÓN HÍBRIDOS
- Arquitectura Lambda
- Arquitectura Kappa
- Apache Flink e implementaciones prácticas
- Druid
- ElasticSearch
- Logstash
- Kibana
UNIDAD DIDÁCTICA 6. CLOUD COMPUTING
- Amazon Web Services
- Google Cloud Platform
UNIDAD DIDÁCTICA 7. ADMINISTRACIÓN DE SISTEMAS BIG
- Administración e Instalación de clusters: Cloudera y Hortonworks
- Optimización y monitorización de servicios
- Seguridad: Apache Knox, Ranger y Sentry
UNIDAD DIDÁCTICA 8. VISUALIZACIÓN DE DATOS
- Herramientas de visualización: Tableau y CartoDB
- Librerías de Visualización: D, Leaflet, Cytoscape
MÓDULO 3. BUSINESS INTELLIGENCE, DATAWAREHOUSE Y HERRAMIENTAS DE VISUALIZACIÓN
UNIDAD DIDÁCTICA 1. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
- Definiendo el concepto de Business Intelligence y sociedad de la información
- Arquitectura de una solución de Business Intelligence
- Business Intelligence en los departamentos de la empresa
- Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
- Sistemas operacionales y Procesos ETL en un sistema de BI
- Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 2. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
- Cuadros de Mando Integrales (CMI)
- Sistemas de Soporte a la Decisión (DSS)
- Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 3. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de textos y Web Mining
- Data mining y marketing
UNIDAD DIDÁCTICA 4. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
- Aproximación al concepto de DataMart
- Procesos de extracción, transformación y carga de datos (ETL)
- Data Warehou
- Herramientas de Explotación
- Herramientas para el desarrollo de cubos OLAP
UNIDAD DIDÁCTICA 5. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
- Visión General. ¿Por qué DataWarehouse?
- Estructura y Construcción
- Fases de implantación
- Características
- Data Warehouse en la nube
UNIDAD DIDÁCTICA 6. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
- Tipos de herramientas para BI
- Productos comerciales para BI
- Productos Open Source para BI
- Beneficios de las herramientas de BI
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN A LA VISUALIZACIÓN DE DATOS
- ¿Qué es la visualización de datos?
- Importancia y herramientas de la visualización de datos
- Visualización de datos: Principios básicos
UNIDAD DIDÁCTICA 8. TABLEAU
- ¿Qué es Tableau? Usos y aplicaciones
- Tableau Server: Arquitectura y Componentes
- Instalación Tableau
- Espacio de trabajo y navegación
- Conexiones de datos en Tableau
- Tipos de filtros en Tableau
- Ordenación de datos, grupos, jerarquías y conjuntos
- Tablas y gráficos en Tableau
UNIDAD DIDÁCTICA 9. D3 (DATA DRIVEN DOCUMENTS)
- Fundamentos D3
- Instalación D3
- Funcionamiento D3
- SVG
- Tipos de datos en D3
- Diagrama de barras con D3
- Diagrama de dispersión con D3
UNIDAD DIDÁCTICA 10. GOOGLE DATA
- Google Data Studio
UNIDAD DIDÁCTICA 11. QLIKVIEW
- Instalación y arquitectura
- Carga de datos
- Informes
- Transformación y modelo de datos
- Análisis de datos
UNIDAD DIDÁCTICA 12. POWERBI
- Business Intelligence en Excel
- Herramientas Powerbi
UNIDAD DIDÁCTICA 13. CARTO
- CartoDB
MÓDULO 4. DATA SCIENCE Y PROGRAMACIÓN ESTADÍSTICA CON PYTHON Y R
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL. Una base de datos relacional
UNIDAD DIDÁCTICA 3. PYTHON Y EL ANÁLISIS DE DATOS
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python. Dream Team del Big Data
UNIDAD DIDÁCTICA 4. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 5. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 6. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 5. INTELIGENCIA ARTIFICIAL (IA), MACHINE LEARNING (ML) Y DEEP LEARNING (DL)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
- Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
- Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 10. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES
- Redes neuronales
- Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
UNIDAD DIDÁCTICA 16. REDES MULTICAPA
- Tipos de redes profundas
- Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
MÓDULO 6. PLN, CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
UNIDAD DIDÁCTICA 2. PLN EN PYTHON
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
UNIDAD DIDÁCTICA 6. ¿QUÉ ES UN CHATBOT?
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
UNIDAD DIDÁCTICA 7. RELACIÓN ENTRE IA Y CHATBOTS
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 8. ÁMBITOS DE APLICACIÓN CHATBOTS
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel