Para qué te prepara:
Este Curso Superior de Inteligencia Artificial aplicada a los negocios persigue la formación en un ámbito cada vez más demandado por multitud de empresas que apuestan por el desarrollo de software y sistemas inteligentes gracias a la aplicación de la Inteligencia Artificial, el Machine Learning y el Deep Learning. Gracias a este curso serás capaz de crear redes neuronales, tanto de una capa como multicapa así como sistemas expertos y chatbots.
A quién va dirigido:
Este Curso Superior de Inteligencia Artificial aplicada a los negocios busca formar a profesionales en uno de los sectores laborales más demandados en la actualidad, el del comportamiento inteligente y automatizado de cualquier sistema. Si eres un apasionado de las nuevas tecnologías y tienes inquietudes sobre todo lo que nos depara el futuro tecnológico, este es tu curso.
Titulación:
Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Objetivos:
- Descubrir la importancia y crecimiento de la inteligencia artificial en todas las tecnologías actuales. - Saber utilizar las herramientas de inteligencia de negocio (Business Intelligence) PowerBI, Tableau y Qlikview. - Desarrollar un sistema de Deep Learning. - Entender cómo se puede llevar a cabo el procesamiento del lenguaje natural. - Contruir un chatbot mediante el uso de PLN. - Manejar, programar y parametrizar herramientas avanzadas de Machine Learning para la creación de software con inteligencia artificial.
Salidas Laborales:
Mediante la realización de este Curso de Inteligencia Artificial aplicada a los negocios podrás trabajar como Director de proyectos en inteligencia artificial, Business Analyst y Programador de Inteligencia Artificial en proyectos de Deep learning o Programador de chatbots inteligentes a medida.
Resumen:
Este Curso Superior de Inteligencia Artificial aplicada a los negocios proporciona formación en un ámbito cada vez más demandado por las empresas que apuestan por el desarrollo de software y sistemas inteligentes gracias a la inteligencia artificial, el Machine Learning, el Deep Learning y el procesamiento de lenguaje natural (PLN), así como la construcción de sistemas artificiales con capacidad de interacción con su entorno y los usuarios. El Curso Superior de Inteligencia Artificial aplicada a los negocios busca formar a profesionales en uno de los sectores laborales más demandados en la actualidad, el del comportamiento inteligente y automatizado de cualquier sistema. Si eres un apasionado de las nuevas tecnologías y tienes inquietudes sobre todo lo que nos depara el futuro tecnológico, este es tu curso. En INESEM podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista asesorado por un equipo docente especialista en el sector.
Metodología:
Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes. La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. Por último, es necesario notificar la finalización de la acción formativa desde la plataforma para comenzar la expedición del título.
Temario:
MÓDULO 1. INTELIGENCIA ARTIFICIAL (IA), MACHINE LEARNING (ML) Y DEEP LEARNING (DL)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING
UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN
UNIDAD DIDÁCTICA 10. CLASIFICACIÓN
UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING
UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN
UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES
UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA
UNIDAD DIDÁCTICA 16. REDES MULTICAPA
UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE
MÓDULO 2. BUSINESS INTELLIGENCE
UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
UNIDAD DIDÁCTICA 2. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
UNIDAD DIDÁCTICA 3. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE CON POWERBI
UNIDAD DIDÁCTICA 6. HERRAMIENTA TABLEAU
UNIDAD DIDÁCTICA 7. HERRAMIENTA QLIKVIEW
MÓDULO 3. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
MÓDULO 4. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS